ترغب بنشر مسار تعليمي؟ اضغط هنا

Approximating max-min linear programs with local algorithms

145   0   0.0 ( 0 )
 نشر من قبل Jukka Suomela
 تاريخ النشر 2007
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A local algorithm is a distributed algorithm where each node must operate solely based on the information that was available at system startup within a constant-size neighbourhood of the node. We study the applicability of local algorithms to max-min LPs where the objective is to maximise $min_k sum_v c_{kv} x_v$ subject to $sum_v a_{iv} x_v le 1$ for each $i$ and $x_v ge 0$ for each $v$. Here $c_{kv} ge 0$, $a_{iv} ge 0$, and the support sets $V_i = {v : a_{iv} > 0 }$, $V_k = {v : c_{kv}>0 }$, $I_v = {i : a_{iv} > 0 }$ and $K_v = {k : c_{kv} > 0 }$ have bounded size. In the distributed setting, each agent $v$ is responsible for choosing the value of $x_v$, and the communication network is a hypergraph $mathcal{H}$ where the sets $V_k$ and $V_i$ constitute the hyperedges. We present inapproximability results for a wide range of structural assumptions; for example, even if $|V_i|$ and $|V_k|$ are bounded by some constants larger than 2, there is no local approximation scheme. To contrast the negative results, we present a local approximation algorithm which achieves good approximation ratios if we can bound the relative growth of the vertex neighbourhoods in $mathcal{H}$.



قيم البحث

اقرأ أيضاً

We study the applicability of distributed, local algorithms to 0/1 max-min LPs where the objective is to maximise ${min_k sum_v c_{kv} x_v}$ subject to ${sum_v a_{iv} x_v le 1}$ for each $i$ and ${x_v ge 0}$ for each $v$. Here $c_{kv} in {0,1}$, $a_{ iv} in {0,1}$, and the support sets ${V_i = {v : a_{iv} > 0 }}$ and ${V_k = {v : c_{kv}>0 }}$ have bounded size; in particular, we study the case $|V_k| le 2$. Each agent $v$ is responsible for choosing the value of $x_v$ based on information within its constant-size neighbourhood; the communication network is the hypergraph where the sets $V_k$ and $V_i$ constitute the hyperedges. We present a local approximation algorithm which achieves an approximation ratio arbitrarily close to the theoretical lower bound presented in prior work.
In a bipartite max-min LP, we are given a bipartite graph $myG = (V cup I cup K, E)$, where each agent $v in V$ is adjacent to exactly one constraint $i in I$ and exactly one objective $k in K$. Each agent $v$ controls a variable $x_v$. For each $i i n I$ we have a nonnegative linear constraint on the variables of adjacent agents. For each $k in K$ we have a nonnegative linear objective function of the variables of adjacent agents. The task is to maximise the minimum of the objective functions. We study local algorithms where each agent $v$ must choose $x_v$ based on input within its constant-radius neighbourhood in $myG$. We show that for every $epsilon>0$ there exists a local algorithm achieving the approximation ratio ${Delta_I (1 - 1/Delta_K)} + epsilon$. We also show that this result is the best possible -- no local algorithm can achieve the approximation ratio ${Delta_I (1 - 1/Delta_K)}$. Here $Delta_I$ is the maximum degree of a vertex $i in I$, and $Delta_K$ is the maximum degree of a vertex $k in K$. As a methodological contribution, we introduce the technique of graph unfolding for the design of local approximation algorithms.
We present a local algorithm (constant-time distributed algorithm) for approximating max-min LPs. The objective is to maximise $omega$ subject to $Ax le 1$, $Cx ge omega 1$, and $x ge 0$ for nonnegative matrices $A$ and $C$. The approximation ratio o f our algorithm is the best possible for any local algorithm; there is a matching unconditional lower bound.
We present a bounded-error quantum algorithm for evaluating Min-Max trees. For a tree of size N our algorithm makes N^{1/2+o(1)} comparison queries, which is close to the optimal complexity for this problem.
In this paper we present a new data structure for double ended priority queue, called min-max fine heap, which combines the techniques used in fine heap and traditional min-max heap. The standard operations on this proposed structure are also present ed, and their analysis indicates that the new structure outperforms the traditional one.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا