ترغب بنشر مسار تعليمي؟ اضغط هنا

Finite Size Scaling for the O(N) universality class from Renormalization Group Methods

44   0   0.0 ( 0 )
 نشر من قبل Bertram Klein
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English
 تأليف Bertram Klein




اسأل ChatGPT حول البحث

The QCD phase diagram at finite temperature and density is a topic of considerable interest. Although much progress has been made in recent years, some open questions remain. Even at zero density, the order of the transition for two light flavors of fermions has not yet been conclusively established. While considerable evidence exists in favor of a second-order transition for massless quarks and a crossover for massive quarks, some recent results with two flavors of staggered fermions suggest a transition of first order. Since lattice simulations are performed in finite simulation volumes, actual phase transitions cannot be observed directly. Thus, finite-size scaling is a very useful tool in the analysis of lattice data. By comparing the scaling behavior of observables to the expected scaling properties, values of critical exponents can be confirmed and the order as well as the universality class of a transition can be established. In the comparison to lattice QCD results, the critical exponents and the universal scaling functions have been obtained mainly by means of lattice simulations of O(N) spin models, and results are usually restricted to the critical temperature or the point at which the susceptibilities peak. We propose to use a non-perturbative Renormalization Group method for this purpose. We have calculated the critical finite-size scaling behavior and the universal scaling functions for the three-dimensional O(4)-model for a wide range of temperatures and values of the symmetry breaking parameter. Our results are suitable for a comparison to lattice QCD results for the chiral susceptibility and the order parameter and can be used to check the consistency of the finite-size scaling behavior with that of the O(N) universality class.

قيم البحث

اقرأ أيضاً

321 - Bertram Klein 2007
The phase diagram of QCD at finite temperature and density and the existence of a critical point are currently very actively researched topics. Although tremendous progress has been made, in the case of two light quark flavors even the order of the p hase transition at zero density is still under discussion. Finite-size scaling is a powerful method for the analysis of phase transitions in lattice QCD simulations. From the scaling behavior, critical exponents can be tested and the order as well as the universality class of a phase transition can be established. This requires knowledge of the critical exponents and the scaling behavior. We use a non-perturbative Renormalization Group method to obtain critical exponents and the finite-size scaling functions for the O(4) universality class in three dimensions. These results are useful for a comparison to the actual scaling behavior in lattice QCD simulations with two flavors, as well as for an estimate of the size of the scaling region and the deviations from the expected scaling behavior.
We present our progress on a study of the $O(3)$ model in two-dimensions using the Tensor Renormalization Group method. We first construct the theory in terms of tensors, and show how to construct $n$-point correlation functions. We then give results for thermodynamic quantities at finite and infinite volume, as well as 2-point correlation function data. We discuss some of the advantages and challenges of tensor renormalization and future directions in which to work.
We calculate thermodynamic potentials and their derivatives for the three-dimensional $O(2)$ model using tensor-network methods to investigate the well-known second-order phase transition. We also consider the model at non-zero chemical potential to study the Silver Blaze phenomenon, which is related to the particle number density at zero temperature. Furthermore, the temperature dependence of the number density is explored using asymmetric lattices. Our results for both zero and non-zero magnetic field, temperature, and chemical potential are consistent with those obtained using other methods.
We describe a new multifractal finite size scaling (MFSS) procedure and its application to the Anderson localization-delocalization transition. MFSS permits the simultaneous estimation of the critical parameters and the multifractal exponents. Simula tions of system sizes up to L^3=120^3 and involving nearly 10^6 independent wavefunctions have yielded unprecedented precision for the critical disorder W_c=16.530 (16.524,16.536) and the critical exponent nu=1.590 (1.579,1.602). We find that the multifractal exponents Delta_q exhibit a previously predicted symmetry relation and we confirm the non-parabolic nature of their spectrum. We explain in detail the MFSS procedure first introduced in our Letter [Phys. Rev. Lett. 105, 046403 (2010)] and, in addition, we show how to take account of correlations in the simulation data. The MFSS procedure is applicable to any continuous phase transition exhibiting multifractal fluctuations in the vicinity of the critical point.
We study the renormalization group flow of $mathbb{Z}_2$-invariant supersymmetric and non-supersymmetric scalar models in the local potential approximation using functional renormalization group methods. We focus our attention to the fixed points of the renormalization group flow of these models, which emerge as scaling solutions. In two dimensions these solutions are interpreted as the minimal (supersymmetric) models of conformal field theory, while in three dimension they are manifestations of the Wilson-Fisher universality class and its supersymmetric counterpart. We also study the analytically continued flow in fractal dimensions between 2 and 4 and determine the critical dimensions for which irrelevant operators become relevant and change the universality class of the scaling solution. We also include novel analytic and numerical investigations of the properties that determine the occurrence of the scaling solutions within the method. For each solution we offer new techniques to compute the spectrum of the deformations and obtain the corresponding critical exponents.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا