ترغب بنشر مسار تعليمي؟ اضغط هنا

Berry Phases, Quantum Phase Transitions and Chern Numbers

155   0   0.0 ( 0 )
 نشر من قبل Andr\\'es Fernando Reyes Lega
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف H.A. Contreras




اسأل ChatGPT حول البحث

We study the relation between Chern numbers and Quantum Phase Transitions (QPT) in the XY spin-chain model. By coupling the spin chain to a single spin, it is possible to study topological invariants associated to the coupling Hamiltonian. These invariants contain global information, in addition to the usual one (obtained by integrating the Berry connection around a closed loop). We compute these invariants (Chern numbers) and discuss their relation to QPT. In particular we show that Chern numbers can be used to label regions corresponding to different phases.



قيم البحث

اقرأ أيضاً

108 - J. A. Hoyos , Thomas Vojta 2008
We present an analytical strong-disorder renormalization group theory of the quantum phase transition in the dissipative random transverse-field Ising chain. For Ohmic dissipation, we solve the renormalization flow equations analytically, yielding as ymptotically exact results for the low-temperature properties of the system. We find that the interplay between quantum fluctuations and Ohmic dissipation destroys the quantum critical point by smearing. We also determine the phase diagram and the behavior of observables in the vicinity of the smeared quantum phase transition.
104 - Ruochen Ma , Yin-Chen He 2020
Motivated by the recent work of QED$_3$-Chern-Simons quantum critical points of fractional Chern insulators (Phys. Rev. X textbf{8}, 031015, (2018)), we study its non-Abelian generalizations, namely QCD$_3$-Chern-Simons quantum phase transitions of f ractional Chern insulators. These phase transitions are described by Dirac fermions interacting with non-Abelian Chern-Simons gauge fields ($U(N)$, $SU(N)$, $USp(N)$, etc.). Utilizing the level-rank duality of Chern-Simons gauge theory and non-Abelian parton constructions, we discuss two types of QCD$_3$ quantum phase transitions. The first type happens between two Abelian states in different Jain sequences, as opposed to the QED3 transitions between Abelian states in the same Jain sequence. A good example is the transition between $sigma^{xy}=1/3$ state and $sigma^{xy}=-1$ state, which has $N_f=2$ Dirac fermions interacting with a $U(2)$ Chern-Simons gauge field. The second type is naturally involving non-Abelian states. For the sake of experimental feasibility, we focus on transitions of Pfaffian-like states, including the Moore-Read Pfaffian, anti-Pfaffian, particle-hole Pfaffian, etc. These quantum phase transitions could be realized in experimental systems such as fractional Chern insulators in graphene heterostructures.
The interest in the topological properties of materials brings into question the problem of topological phase transitions. As a control parameter is varied, one may drive a system through phases with different topological properties. What is the natu re of these transitions and how can we characterize them? The usual Landau approach, with the concept of an order parameter that is finite in a symmetry broken phase is not useful in this context. Topological transitions do not imply a change of symmetry and there is no obvious order parameter. A crucial observation is that they are associated with a diverging length that allows a scaling approach and to introduce critical exponents which define their universality classes. At zero temperature the critical exponents obey a quantum hyperscaling relation. We study finite size effects at topological transitions and show they exhibit universal behavior due to scaling. We discuss the possibility that they become discontinuous as a consequence of these effects and point out the relevance of our study for real systems.
We present a pedagogical overview of recent theoretical work on unconventional quantum phases and quantum phase transitions in condensed matter systems. Strong correlations between electrons can lead to a breakdown of two traditional paradigms of sol id state physics: Landaus theories of Fermi liquids and phase transitions. We discuss two resulting exotic states of matter: topological and critical spin liquids. These two quantum phases do not display any long-range order even at zero temperature. In each case, we show how a gauge theory description is useful to describe the new concepts of topological order, fractionalization and deconfinement of excitations which can be present in such spin liquids. We make brief connections, when possible, to experiments in which the corresponding physics can be probed. Finally, we review recent work on deconfined quantum critical points. The tone of these lecture notes is expository: focus is on gaining a physical picture and understanding, with technical details kept to a minimum.
We investigate the quantization of the complex-valued Berry phases in non-Hermitian quantum systems with certain generalized symmetries. In Hermitian quantum systems, the real-valued Berry phase is known to be quantized in the presence of certain sym metries, and this quantized Berry phase can be regarded as a topological order parameter for gapped quantum systems. In this paper, on the other hand, we establish that the complex Berry phase is also quantized in the systems described by a family of non-Hermitian Hamiltonians. Let $H(theta)$ be a non-Hermitian Hamiltonian parameterized by $theta$. Suppose that there exists a unitary and Hermitian operator $P$ such that $PH(theta)P = H(-theta)$ or $PH(theta)P = H^dagger(-theta)$. We prove that in the former case, the complex Berry phase $gamma$ is $mathbb{Z}_2$-quantized, while in the latter, only the real part of $gamma$ is $mathbb{Z}_2$-quantized. The operator $P$ can be viewed as a generalized symmetry for $H(theta)$, and in practice, $P$ can be, for example, a spatial inversion. We also argue that this quantized complex Berry phase is capable of classifying non-Hermitian topological phases, and we demonstrate this in some one-dimensional strongly correlated systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا