ﻻ يوجد ملخص باللغة العربية
We study the relation between Chern numbers and Quantum Phase Transitions (QPT) in the XY spin-chain model. By coupling the spin chain to a single spin, it is possible to study topological invariants associated to the coupling Hamiltonian. These invariants contain global information, in addition to the usual one (obtained by integrating the Berry connection around a closed loop). We compute these invariants (Chern numbers) and discuss their relation to QPT. In particular we show that Chern numbers can be used to label regions corresponding to different phases.
We present an analytical strong-disorder renormalization group theory of the quantum phase transition in the dissipative random transverse-field Ising chain. For Ohmic dissipation, we solve the renormalization flow equations analytically, yielding as
Motivated by the recent work of QED$_3$-Chern-Simons quantum critical points of fractional Chern insulators (Phys. Rev. X textbf{8}, 031015, (2018)), we study its non-Abelian generalizations, namely QCD$_3$-Chern-Simons quantum phase transitions of f
The interest in the topological properties of materials brings into question the problem of topological phase transitions. As a control parameter is varied, one may drive a system through phases with different topological properties. What is the natu
We present a pedagogical overview of recent theoretical work on unconventional quantum phases and quantum phase transitions in condensed matter systems. Strong correlations between electrons can lead to a breakdown of two traditional paradigms of sol
We investigate the quantization of the complex-valued Berry phases in non-Hermitian quantum systems with certain generalized symmetries. In Hermitian quantum systems, the real-valued Berry phase is known to be quantized in the presence of certain sym