ترغب بنشر مسار تعليمي؟ اضغط هنا

An Optical Lattice Clock with Spin-polarized 87Sr Atoms

207   0   0.0 ( 0 )
 نشر من قبل Pierre Lemonde
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Xavier Baillard




اسأل ChatGPT حول البحث

We present a new evaluation of an 87Sr optical lattice clock using spin polarized atoms. The frequency of the 1S0-3P0 clock transition is found to be 429 228 004 229 873.6 Hz with a fractional accuracy of 2.6 10^{-15}, a value that is comparable to the frequency difference between the various primary standards throughout the world. This measurement is in excellent agreement with a previous one of similar accuracy.



قيم البحث

اقرأ أيضاً

We report a frequency measurement of the 1S0-3P0 transition of 87Sr atoms in an optical lattice clock. The frequency is determined to be 429 228 004 229 879 (5) Hz with a fractional uncertainty that is comparable to state-of-the-art optical clocks wi th neutral atoms in free fall. Two previous measurements of this transition were found to disagree by about 2x10^{-13}, i.e. almost four times the combined error bar, instilling doubt on the potential of optical lattice clocks to perform at a high accuracy level. In perfect agreement with one of these two values, our measurement essentially dissipates this doubt.
188 - Xavier Baillard 2007
We report the first accuracy evaluation of an optical lattice clock based on the 1S0 - 3P0 transition of an alkaline earth boson, namely 88Sr atoms. This transition has been enabled using a static coupling magnetic field. The clock frequency is deter mined to be 429 228 066 418 009(32) Hz. The isotopic shift between 87Sr and 88Sr is 62 188 135 Hz with fractional uncertainty 5.10^{-7}. We discuss the conditions necessary to reach a clock accuracy of 10^{-17} or less using this scheme.
We demonstrate a new method of cavity-enhanced non-destructive detection of atoms for a strontium optical lattice clock. The detection scheme is shown to be linear in atom number up to at least 10,000 atoms, to reject technical noise sources, to achi eve signal to noise ratio close to the photon shot noise limit, to provide spatially uniform atom-cavity coupling, and to minimize inhomogeneous ac Stark shifts. These features enable detection of atoms with minimal perturbation to the atomic state, a critical step towards realizing an ultra-high-stability, quantum-enhanced optical lattice clock.
We experimentally investigate an optical clock based on $^{171}$Yb ($I=1/2$) atoms confined in an optical lattice. We have evaluated all known frequency shifts to the clock transition, including a density-dependent collision shift, with a fractional uncertainty of $3.4 times 10^{-16}$, limited principally by uncertainty in the blackbody radiation Stark shift. We measured the absolute clock transition frequency relative to the NIST-F1 Cs fountain clock and find the frequency to be 518 295 836 590 865.2(0.7) Hz.
We have developed an optical lattice clock that can operate in dual modes: a strontium (Sr) clock mode and an ytterbium (Yb) clock mode. Dual-mode operation of the Sr-Yb optical lattice clock is achieved by alternately cooling and trapping $^{87}$Sr and $^{171}$Yb atoms inside the vacuum chamber of the clock. Optical lattices for Sr and Yb atoms were arranged with horizontal and vertical configurations, respectively, resulting in a small distance of the order of 100 $mu$m between the trapped Sr and Yb atoms. The $^{1}$S$_{0}$-$^{3}$P$_{0}$ clock transitions in the trapped atoms were interrogated in turn and the clock lasers were stabilized to the transitions. We demonstrated the frequency ratio measurement of the Sr and Yb clock transitions by using the dual-mode operation of the Sr-Yb optical lattice clock. The dual-mode operation can reduce the uncertainty of the blackbody radiation shift in the frequency ratio measurement, because both Sr and Yb atoms share the same blackbody radiation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا