ﻻ يوجد ملخص باللغة العربية
The voltage oscillations which occur in an ideally current-biased Josephson junction, were proposed to make a current standard for metrology. We demonstrate similar oscillations in a more complex Josephson circuit derived from the Cooper pair box: the quantronium. When a constant current I is injected in the gate capacitor of this device, oscillations develop at the frequency fB=I/2e, with e the electron charge. We detect these oscillations through the sidebands induced at multiples of fB in the spectrum of a microwave signal reflected on the circuit, up to currents I exceeding 100 pA. We discuss the potential interest of this current to frequency conversion experiment for metrology.
We investigate the dynamics of a microwave-driven Josephson junction capacitively coupled to a lumped element LC oscillator. In the regime of driving where the Josephson junction can be approximated as a Kerr oscillator, this minimal nonlinear system
We investigate critical current noise in short ballistic graphene Josephson junctions in the open-circuit gate-voltage limit within the McWorther model. We find flicker noise in a wide frequency range and discuss the temperature dependence of the noi
We discuss the non-zero frequency noise of heat current with the explicit example of energy carried by thermal photons in a circuit. Instead of the standard circuit modelling that gives a convenient way of predicting time-averaged heat current, we de
We consider the measurement of higher current moments with a dissipative resonant circuit, which is coupled inductively to a mesoscopic device in the coherent regime. Information about the higher current moments is coded in the histograms of the char
Odd frequency (odd-$omega$) electron pair correlations naturally appear at the interface between BCS superconductors and other materials. The detection of odd-$omega$ pairs, which are necessarily non-local in time, is still an open problem. The main