ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-Retracting Motion of Graphite Microflakes

406   0   0.0 ( 0 )
 نشر من قبل Xu Zhiping
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the observation of a novel phenomenon, the self-retracting motion of graphite, in which tiny flakes of graphite, after being displaced to various suspended positions from islands of highly orientated pyrolytic graphite, retract back onto the islands under no external influences. Our repeated probing and observing such flakes of various sizes indicate the existence of a critical size of flakes, approximately 35 micrometer, above which the self-retracting motion does not occur under the operation. This helps to explain the fact that the self-retracting motion of graphite has not been reported, because samples of natural graphite are typical larger than this critical size. In fact, reports of this phenomenon have not been found in the literature for single crystals of any kinds. A model that includes the static and dynamic shear strengths, the van der Waals interaction force, and the edge dangling bond interaction effect, was used to explain the observed phenomenon. These findings may conduce to create nano-electromechanical systems with a wide range of mechanical operating frequency from mega to giga hertzs.


قيم البحث

اقرأ أيضاً

Through experimental study, we reveal superlubricity as the mechanism of self-retracting motion of micrometer sized graphite flakes on graphite platforms by correlating respectively the lock-up or self-retraction states with the commensurate or incom mensurate contacts. We show that the scale-dependent loss of self-retractability is caused by generation of contact interfacial defects. A HOPG structure is also proposed to understand our experimental observations, particularly in term of the polycrystal structure. The realisation of the superlubricity in micrometer scale in our experiments will have impact in the design and fabrication of micro/nanoelectromechanical systems based on graphitic materials.
Exposure of highly oriented pyrolytic graphite to bromine vapor gives rise to in-plane charge conductivities which increase monotonically with intercalation time toward values (for ~6 at% Br) that are significantly higher than Cu at temperatures down to 5 K. Magnetotransport, optical reflectivity and magnetic susceptibility measurements confirm that the Br dopes the graphene sheets with holes while simultaneously increasing the interplanar separation. The increase of mobility (~ 5E4 cm^2/Vs at T=300 K) and resistance anisotropy together with the reduced diamagnetic susceptibility of the intercalated samples suggests that the observed supermetallic conductivity derives from a parallel combination of weakly-coupled hole-doped graphene sheets.
We present a x-ray dichroism study of graphite surfaces that addresses the origin and magnitude of ferromagnetism in metal-free carbon. We find that, in addition to carbon $pi$ states, also hydrogen-mediated electronic states exhibit a net spin polar ization with significant magnetic remanence at room temperature. The observed magnetism is restricted to the top $approx$10 nm of the irradiated sample where the actual magnetization reaches $ simeq 15$ emu/g at room temperature. We prove that the ferromagnetism found in metal-free untreated graphite is intrinsic and has a similar origin as the one found in proton bombarded graphite.
235 - Zhiming Wang , Feng Xu , Chao Lu 2008
The transport properties of highly oriented pyrolitic graphite (HOPG) and polycrystal graphite have been studied. The electric conductivity of HOPG is several times larger than that of the polycrystal graphite. Along with the large magnetoresistances (MR), the polycrystal graphite show the accordant semiconductor-like character in a wide temperature (roughly range from 20K to 120K) under 0, 4, 8, 12 T applied magnetic field, while the magnetic-field-induced metal-semiconductor-like transition was only found in HOPG. The difference of transport properties originates from the Coulomb interaction quasipartical in HOPG graphite layers in contrast with the grain boundary scattering in the polycrystal graphite.
We demonstrate the formation of semimetal graphite/semiconductor Schottky barriers where the semiconductor is either silicon (Si), gallium arsenide (GaAs) or 4H-silicon carbide (4H-SiC). Near room temperature, the forward-bias diode characteristics a re well described by thermionic emission, and the extracted barrier heights, which are confirmed by capacitance voltage measurements, roughly follow the Schottky-Mott relation. Since the outermost layer of the graphite electrode is a single graphene sheet, we expect that graphene/semiconductor barriers will manifest similar behavior.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا