ترغب بنشر مسار تعليمي؟ اضغط هنا

Central mass accumulation in nuclear spirals

240   0   0.0 ( 0 )
 نشر من قبل Witold Maciejewski
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In central regions of non-axisymmetric galaxies high-resolution hydrodynamical simulations indicate spiral shocks, which are capable of transporting gas inwards. The efficiency of transport is lower at smaller radii, therefore instead of all gas dropping onto the galactic centre, a roughly uniform distribution of high-density gas develops in the gaseous nuclear spiral downstream from the shock, and the shear in gas is very low there. These are excellent conditions for star formation. This mechanism is likely to contribute to the process of (pseudo-) bulge formation.

قيم البحث

اقرأ أيضاً

Recent high-resolution observations indicate that nuclear spirals are often present in the innermost few hundred parsecs of disc galaxies. My models show that nuclear spirals form naturally as a gas response to non-axisymmetry in the gravitational po tential. Some nuclear spirals take the form of spiral shocks, resulting in streaming motions in the gas, and in inflow comparable to the accretion rates needed to power local Active Galactic Nuclei. Recently streaming motions of amplitude expected from the models have been observed in nuclear spirals, confirming the role of nuclear spirals in feeding of the central massive black holes.
We use hydrodynamical simulations to construct a new coherent picture for the gas flow in the Central Molecular Zone (CMZ), the region of our Galaxy within $Rleq 500, mathrm{pc}$. We relate connected structures observed in $(l,b,v)$ data cubes of mol ecular tracers to nuclear spiral arms. These arise naturally in hydrodynamical simulations of barred galaxies, and are similar to those that can be seen in external galaxies such as NGC4303 or NGC1097. We discuss a face-on view of the CMZ including the position of several prominent molecular clouds, such as Sgr B2, the $20,{rm km, s^{-1}}$ and $50,{rm km, s^{-1}}$ clouds, the polar arc, Bania Clump 2 and Sgr C. Our model is also consistent with the larger scale gas flow, up to $Rsimeq 3,rm kpc$, thus providing a consistent picture of the entire Galactic bar region.
We present a harmonic expansion of the observed line-of-sight velocity field as a method to recover and investigate spiral structures in the nuclear regions of galaxies. We apply it to the emission-line velocity field within the circumnuclear starfor ming ring of NGC1097, obtained with the GMOS-IFU spectrograph. The radial variation of the third harmonic terms are well described by a logarithmic spiral, from which we interpret that the gravitational potential is weakly perturbed by a two-arm spiral density wave with inferred pitch angle of of 52+/-4 degrees. This interpretation predicts a two-arm spiral distortion in the surface brightness, as hinted by the dust structures in central images of NGC1097, and predicts a combined one-arm and three-arm spiral structure in the velocity field, as revealed in the non-circular motions of the ionised gas within the circumnuclear region of this galaxy. Next, we use a simple spiral perturbation model to constrain the fraction of the measured non-circular motions that is due to radial inflow. We combine the resulting inflow velocity with the gas density in the spiral arms, inferred from emission line ratios, to estimate the mass inflow rate as a function of radius, which reaches about 0.011 Msun/yr at a distance of 70 pc from the center. This value corresponds to a fraction of about 4.2 x 10^{-3} of the Eddington mass accretion rate onto the central black hole in this LINER/Seyfert1 galaxy. We conclude that the line-of-sight velocity not only can provide a cleaner view of nuclear spirals than the associated dust, but that the presented method also allows the quantitative study of these possibly important links in fueling the centers of galaxies, including providing a handle on the mass inflow rate as a function of radius.
Recent developments in the field of anisotropic flow in nuclear collision are reviewed. The results from the top AGS energy to the top RHIC energy are discussed with emphasis on techniques, interpretation, and uncertainties in the measurements.
We present surface photometry for the central regions of a sample of 48 spiral galaxies (mostly unbarred and barred of types Sbc or Sc) observed with the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope. Surface brightness pro files were derived and modeled with a Nuker law. We also analyzed archival Wide Field Planetary Camera~2 images with a larger field of view, available for 18 galaxies in our sample. We modeled the extracted bulge surface brightness profiles with an exponential, a de Vaucouleurs or a Sersic profile. In agreement with previous studies, we find that bulges of Sbc galaxies fall into two categories: bulges well described by an exponential profile and those well described by an de Vaucouleurs profile. Only one galaxy requires the use of a more general Sersic profile to properly describe the bulge. Nuclear photometrically distinct components are found in ~55% of the galaxies. For those that we classify as star clusters based on their resolved extent we find absolute magnitudes that are brighter on average than those previously identified in spiral galaxies. This might be due to a bias in our sample toward star forming galaxies, combined with a trend for star forming galaxies to host brighter central clusters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا