ترغب بنشر مسار تعليمي؟ اضغط هنا

Collective phenomena in non-central nuclear collisions

116   0   0.0 ( 0 )
 نشر من قبل Art Poskanzer
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent developments in the field of anisotropic flow in nuclear collision are reviewed. The results from the top AGS energy to the top RHIC energy are discussed with emphasis on techniques, interpretation, and uncertainties in the measurements.



قيم البحث

اقرأ أيضاً

267 - Sergei A. Voloshin 2011
Many features of multiparticle production in ultra-relativistic nuclear collisions reflect the collision geometry and other collision characteristics determining the initial conditions. As the initial conditions affect to a different degree all the p articles, it leads to truly multiparticle effects often referred to as anisotropic collective flow. Studying anisotropic flow in nuclear collisions provides unique and invaluable information about the system evolution and the physics of multiparticle production in general. Being not able to cover all aspects of anisotropic flow in one lecture, I decided in the first part of the lecture to discuss briefly a few important and established results, and in the second part, to focus, in a little more detail, on one recent development -- a recent progress in our understanding of the role of fluctuations in the initial conditions. I also discuss some future measurements that might reveal further details of the multiparticle production processes.
This is a review of the theoretical background, experimental techniques, and phenomenology of what is called the Glauber Model in relativistic heavy ion physics. This model is used to calculate geometric quantities, which are typically expressed as i mpact parameter (b), number of participating nucleons (N_part) and number of binary nucleon-nucleon collisions (N_coll). A brief history of the original Glauber model is presented, with emphasis on its development into the purely classical, geometric picture that is used for present-day data analyses. Distinctions are made between the optical limit and Monte Carlo approaches, which are often used interchangably but have some essential differences in particular contexts. The methods used by the four RHIC experiments are compared and contrasted, although the end results are reassuringly similar for the various geometric observables. Finally, several important RHIC measurements are highlighted that rely on geometric quantities, estimated from Glauber calculations, to draw insight from experimental observables. The status and future of Glauber modeling in the next generation of heavy ion physics studies is briefly discussed.
A review of the main results on the collective type expansion of the compressed and hot fireball formed in heavy ion collisions and some remarks to be considered when comparing multiplicity wise phenomena taking place in A-A, p-A and pp collisions, a re followed by a discussion of the experimental results which seem to evidence collective type phenomena in pp collisions at $sqrt{s}$ = 7 TeV at high charged particle multiplicity. Correlations among the kinetic freeze-out temperature, the average transverse expansion velocity and its profile, as a function of centrality and multiplicity, extracted from the fits of experimental transverse momentum spectra with an expression inspired by hydrodynamical models, estimates on Bjorken energy densities and perspectives in selecting soft and close to azimuthal isotropic events in pp collisions are presented.
Nuclear stopping has been investigated in central symmetric nuclear collisions at intermediate energies. Firstly, it is found that the isotropy ratio, Riso, reaches a minimum near the Fermi energy and saturates or slowly increases depending on the ma ss of the system as the beam energy increases. An approximate scaling based on the size of the system is found above the Fermi energy suggesting the increasing role of in-medium nucleon-nucleon collisions. Secondly, the charge density distributions in velocity space, dZ/dvk and dZ/dv?, reveal a strong memory of the entrance channel and, as such, a sizeable nuclear transparency in the intermediate energy range. Lastly, it is shown that the width of the transverse velocity distribution is proportional to the beam velocity.
We review progress in the study of antinuclei, starting from Diracs equation and the discovery of the positron in cosmic-ray events. The development of proton accelerators led to the discovery of antiprotons, followed by the first antideuterons, demo nstrating that antinucleons bind into antinuclei. With the development of heavy-ion programs at the Brookhaven AGS and CERN SPS, it was demonstrated that central collisions of heavy nuclei offer a fertile ground for research and discoveries in the area of antinuclei. In this review, we emphasize recent observations at Brookhavens Relativistic Heavy Ion Collider and at CERNs Large Hadron Collider, namely, the antihypertriton and the antihelium-4, as well as measurements of the mass difference between light nuclei and antinuclei, and the interaction between antiprotons. Physics implications of the new observations and different production mechanisms are discussed. We also consider implications for related fields, such as hypernuclear physics and space-based cosmic-ray experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا