ﻻ يوجد ملخص باللغة العربية
In the theory of operator quantum error correction (OQEC), the notion of correctability is defined under the assumption that states are perfectly initialized inside a particular subspace, a factor of which (a subsystem) contains the protected information. If the initial state of the system does not belong entirely to the subspace in question, the restriction of the state to the otherwise correctable subsystem may not remain invariant after the application of noise and error correction. It is known that in the case of decoherence-free subspaces and subsystems (DFSs) the condition for perfect unitary evolution inside the code imposes more restrictive conditions on the noise process if one allows imperfect initialization. It was believed that these conditions are necessary if DFSs are to be able to protect imperfectly encoded states from subsequent errors. By a similar argument, general OQEC codes would also require more restrictive error-correction conditions for the case of imperfect initialization. In this study, we examine this requirement by looking at the errors on the encoded state. In order to quantitatively analyze the errors in an OQEC code, we introduce a measure of the fidelity between the encoded information in two states for the case of subsystem encoding. A major part of the paper concerns the definition of the measure and the derivation of its properties. In contrast to what was previously believed, we obtain that more restrictive conditions are not necessary neither for DFSs nor for general OQEC codes. This is because the effective noise that can arise inside the code as a result of imperfect initialization is such that it can only increase the fidelity of an imperfectly encoded state with a perfectly encoded one.
We study the performance of quantum error correction codes(QECCs) under the detection-induced coherent error due to the imperfectness of practical implementations of stabilizer measurements, after running a quantum circuit. Considering the most promi
We study the conditions under which a subsystem code is correctable in the presence of noise that results from continuous dynamics. We consider the case of Markovian dynamics as well as the general case of Hamiltonian dynamics of the system and the e
Quantum computing can become scalable through error correction, but logical error rates only decrease with system size when physical errors are sufficiently uncorrelated. During computation, unused high energy levels of the qubits can become excited,
Realizing the potential of quantum computing will require achieving sufficiently low logical error rates. Many applications call for error rates in the $10^{-15}$ regime, but state-of-the-art quantum platforms typically have physical error rates near
To implement fault-tolerant quantum computation with continuous variables, the Gottesman--Kitaev--Preskill (GKP) qubit has been recognized as an important technological element. We have proposed a method to reduce the required squeezing level to real