ترغب بنشر مسار تعليمي؟ اضغط هنا

Operator quantum error correction for continuous dynamics

138   0   0.0 ( 0 )
 نشر من قبل Ognyan Oreshkov
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the conditions under which a subsystem code is correctable in the presence of noise that results from continuous dynamics. We consider the case of Markovian dynamics as well as the general case of Hamiltonian dynamics of the system and the environment, and derive necessary and sufficient conditions on the Lindbladian and system-environment Hamiltonian, respectively. For the case when the encoded information is correctable during an entire time interval, the conditions we obtain can be thought of as generalizations of the previously derived conditions for decoherence-free subsystems to the case where the subsystem is time dependent. As a special case, we consider conditions for unitary correctability. In the case of Hamiltonian evolution, the conditions for unitary correctability concern only the effect of the Hamiltonian on the system, whereas the conditions for general correctability concern the entire system-environment Hamiltonian. We also derive conditions on the Hamiltonian which depend on the initial state of the environment, as well as conditions for correctability at only a particular moment of time. We discuss possible implications of our results for approximate quantum error correction.



قيم البحث

اقرأ أيضاً

277 - Ognyan Oreshkov 2013
Continuous-time quantum error correction (CTQEC) is an approach to protecting quantum information from noise in which both the noise and the error correcting operations are treated as processes that are continuous in time. This chapter investigates C TQEC based on continuous weak measurements and feedback from the point of view of the subsystem principle, which states that protected quantum information is contained in a subsystem of the Hilbert space. We study how to approach the problem of constructing CTQEC protocols by looking at the evolution of the state of the system in an encoded basis in which the subsystem containing the protected information is explicit. This point of view allows us to reduce the problem to that of protecting a known state, and to design CTQEC procedures from protocols for the protection of a single qubit. We show how previously studied CTQEC schemes with both direct and indirect feedback can be obtained from strategies for the protection of a single qubit via weak measurements and weak unitary operations. We also review results on the performance of CTQEC with direct feedback in cases of Markovian and non-Markovian decoherence, where we have shown that due to the existence of a Zeno regime in non-Markovian dynamics, the performance of CTQEC can exhibit a quadratic improvement if the time resolution of the weak error-correcting operations is high enough to reveal the non-Markovian character of the noise process.
Quantum error correction and symmetry arise in many areas of physics, including many-body systems, metrology in the presence of noise, fault-tolerant computation, and holographic quantum gravity. Here we study the compatibility of these two important principles. If a logical quantum system is encoded into $n$ physical subsystems, we say that the code is covariant with respect to a symmetry group $G$ if a $G$ transformation on the logical system can be realized by performing transformations on the individual subsystems. For a $G$-covariant code with $G$ a continuous group, we derive a lower bound on the error correction infidelity following erasure of a subsystem. This bound approaches zero when the number of subsystems $n$ or the dimension $d$ of each subsystem is large. We exhibit codes achieving approximately the same scaling of infidelity with $n$ or $d$ as the lower bound. Leveraging tools from representation theory, we prove an approximate version of the Eastin-Knill theorem: If a code admits a universal set of transversal gates and corrects erasure with fixed accuracy, then, for each logical qubit, we need a number of physical qubits per subsystem that is inversely proportional to the error parameter. We construct codes covariant with respect to the full logical unitary group, achieving good accuracy for large $d$ (using random codes) or $n$ (using codes based on $W$-states). We systematically construct codes covariant with respect to general groups, obtaining natural generalizations of qubit codes to, for instance, oscillators and rotors. In the context of the AdS/CFT correspondence, our approach provides insight into how time evolution in the bulk corresponds to time evolution on the boundary without violating the Eastin-Knill theorem, and our five-rotor code can be stacked to form a covariant holographic code.
The storage and processing of quantum information are susceptible to external noise, resulting in computational errors that are inherently continuous A powerful method to suppress these effects is to use quantum error correction. Typically, quantum e rror correction is executed in discrete rounds where errors are digitized and detected by projective multi-qubit parity measurements. These stabilizer measurements are traditionally realized with entangling gates and projective measurement on ancillary qubits to complete a round of error correction. However, their gate structure makes them vulnerable to errors occurring at specific times in the code and errors on the ancilla qubits. Here we use direct parity measurements to implement a continuous quantum bit-flip correction code in a resource-efficient manner, eliminating entangling gates, ancilla qubits, and their associated errors. The continuous measurements are monitored by an FPGA controller that actively corrects errors as they are detected. Using this method, we achieve an average bit-flip detection efficiency of up to 91%. Furthermore, we use the protocol to increase the relaxation time of the protected logical qubit by a factor of 2.7 over the relaxation times of the bare comprising qubits. Our results showcase resource-efficient stabilizer measurements in a multi-qubit architecture and demonstrate how continuous error correction codes can address challenges in realizing a fault-tolerant system.
We present an efficient approach to continuous-time quantum error correction that extends the low-dimensional quantum filtering methodology developed by van Handel and Mabuchi [quant-ph/0511221 (2005)] to include error recovery operations in the form of real-time quantum feedback. We expect this paradigm to be useful for systems in which error recovery operations cannot be applied instantaneously. While we could not find an exact low-dimensional filter that combined both continuous syndrome measurement and a feedback Hamiltonian appropriate for error recovery, we developed an approximate reduced-dimensional model to do so. Simulations of the five-qubit code subjected to the symmetric depolarizing channel suggests that error correction based on our approximate filter performs essentially identically to correction based on an exact quantum dynamical model.
Quantum gates in topological quantum computation are performed by braiding non-Abelian anyons. These braiding processes can presumably be performed with very low error rates. However, to make a topological quantum computation architecture truly scala ble, even rare errors need to be corrected. Error correction for non-Abelian anyons is complicated by the fact that it needs to be performed on a continuous basis and further errors may occur while we are correcting existing ones. Here, we provide the first study of this problem and prove its feasibility, establishing non-Abelian anyons as a viable platform for scalable quantum computation. We thereby focus on Ising anyons as the most prominent example of non-Abelian anyons and show that for these a finite error rate can indeed be corrected continuously. There is a threshold error rate $p_c>0$ such that for all error rates $p<p_c$ the probability of a logical error per time-step can be made exponentially small in the distance of a logical qubit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا