ﻻ يوجد ملخص باللغة العربية
We employ numerical simulations of galaxy mergers to explore the effect of galaxy mass ratio on merger--driven starbursts. Our numerical simulations include radiative cooling of gas, star formation, and stellar feedback to follow the interaction and merger of four disk galaxies. The galaxy models span a factor of 23 in total mass and are designed to be representative of typical galaxies in the local Universe. We find that the merger--driven star formation is a strong function of merger mass ratio, with very little, if any, induced star formation for large mass ratio mergers. We define a burst efficiency that is useful to characterize the merger--driven star formation and test that it is insensitive to uncertainties in the feedback parameterization. In accord with previous work we find that the burst efficiency depends on the structure of the primary galaxy. In particular, the presence of a massive stellar bulge stabilizes the disk and suppresses merger--driven star formation for large mass ratio mergers. Direct, co--planar merging orbits produce the largest tidal disturbance and yield that most intense burst of star formation. Contrary to naive expectations, a more compact distribution of gas or an increased gas fraction both decrease the burst efficiency. Owing to the efficient feedback model and the newer version of SPH employed here, the burst efficiencies of the mergers presented here are smaller than in previous studies.
Extragalactic starbursts induced by gravitational interactions can now be studied from z = ~0 to ~2. The evidence that mergers of gas-rich galaxies tend to trigger galaxy-wide starbursts is strong, both statistically and in individual cases of major
The majority of galaxy mergers are expected to be minor mergers. The observational signatures of minor mergers are not well understood, thus there exist few constraints on the minor merger rate. This paper seeks to address this gap in our understandi
Accurate estimation of the merger timescale of galaxy clusters is important to understand the cluster merger process and further the formation and evolution of the large-scale structure of the universe. In this paper, we explore a baryonic effect on
We present an evolutionary model for starbursts, quasars, and spheroidal galaxies in which mergers between gas-rich galaxies drive nuclear inflows of gas, producing intense starbursts and feeding the buried growth of supermassive black holes (BHs) un
We have tested the effect of spatial gradients in stellar mass-to-light ratio (Y) on measurements of black hole masses (MBH) derived from stellar orbit superposition models. Such models construct a static gravitational potential for a galaxy and its