ترغب بنشر مسار تعليمي؟ اضغط هنا

A Baryonic Effect on the Merger Timescale of Galaxy Clusters

142   0   0.0 ( 0 )
 نشر من قبل Qingjuan Yu
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Congyao Zhang




اسأل ChatGPT حول البحث

Accurate estimation of the merger timescale of galaxy clusters is important to understand the cluster merger process and further the formation and evolution of the large-scale structure of the universe. In this paper, we explore a baryonic effect on the merger timescale of galaxy clusters by using hydrodynamical simulations. We find that the baryons play an important role in accelerating the merger process. The merger timescale decreases with increasing the gas fraction of galaxy clusters. For example, the merger timescale is shortened by a factor of up to 3 for merging clusters with gas fractions 0.15, compared with the timescale obtained with zero gas fractions. The baryonic effect is significant for a wide range of merger parameters and especially more significant for nearly head-on mergers and high merging velocities. The baryonic effect on the merger timescale of galaxy clusters is expected to have impacts on the structure formation in the universe, such as the cluster mass function and massive substructures in galaxy clusters, and a bias of no-gas may exist in the results obtained from the dark matter-only cosmological simulations.



قيم البحث

اقرأ أيضاً

93 - Ji-Hoon Ha , 2017
X-ray shocks and radio relics detected in the cluster outskirts are commonly interpreted as shocks induced by mergers of sub-clumps. We study the properties of merger shocks in merging galaxy clusters, using a set of cosmological simulations for the large-scale structure formation of the universe. As a representative case, we here focus on the simulated clusters that undergo almost head-on collisions with mass ratio $sim2$. Due to the turbulent nature of the intracluster medium, shock surfaces are not smooth, but composed of shocks with different Mach numbers. As the merger shocks expand outward from the core to the outskirts, the average Mach number, $left<M_sright>$, increases in time. We suggest that the shocks propagating along the merger axis could be manifested as X-ray shocks and/or radio relics. The kinetic energy through the shocks, $F_phi$, peaks at $sim1$ Gyr after their initial launching, or at $sim1-2$ Mpc from the core. Because of the Mach number dependent model adopted here for the cosmic ray (CR) acceleration efficiency, their CR-energy-weighted Mach number is higher with $left< M_s right>_{rm CR}sim3-4$, compared to the kinetic-energy-weighted Mach number, $left<M_sright>_{phi}sim2-3$. Most energetic shocks are to be found ahead of the lighter dark matter (DM) clump, while the heavier DM clump is located in the opposite side of clusters. Although our study is limited to the merger case considered, the results such as the means and variations of shock properties and their time evolution could be compared with the observed characteristics of merger shocks, constraining interpretations of relevant observations.
111 - Keiichi Umetsu 2018
We reconstruct the two-dimensional (2D) matter distributions in 20 high-mass galaxy clusters selected from the CLASH survey by using the new approach of performing a joint weak lensing analysis of 2D shear and azimuthally averaged magnification measu rements. This combination allows for a complete analysis of the field, effectively breaking the mass-sheet degeneracy. In a Bayesian framework, we simultaneously constrain the mass profile and morphology of each individual cluster assuming an elliptical Navarro-Frenk-White halo characterized by the mass, concentration, projected axis ratio, and position angle of the projected major axis.. We find that spherical mass estimates of the clusters from azimuthally averaged weak-lensing measurements in previous work are in excellent agreement with our results from a full 2D analysis. Combining all 20 clusters in our sample, we detect the elliptical shape of weak-lensing halos at the $5sigma$ significance level within a scale of 2Mpc$/h$. The median projected axis ratio is $0.67pm 0.07$ at a virial mass of $M_mathrm{vir}=(15.2pm 2.8) times 10^{14} M_odot$, which is in agreement with theoretical predictions of the standard collisionless cold dark matter model. We also study misalignment statistics of the brightest cluster galaxy, X-ray, thermal Sunyaev-Zeldovich effect, and strong-lensing morphologies with respect to the weak-lensing signal. Among the three baryonic tracers studied here, we find that the X-ray morphology is best aligned with the weak-lensing mass distribution, with a median misalignment angle of $21pm 7$ degrees. We also conduct a stacked quadrupole shear analysis assuming that the X-ray major axis is aligned with that of the projected mass distribution. This yields a consistent axis ratio of $0.67pm 0.10$, suggesting again a tight alignment between the intracluster gas and dark matter.
In a purely cold dark matter universe, the initial matter power spectrum and its subsequent gravitational growth contain no special mass- or time-scales, and so neither do the emergent population statistics of internal dark matter (DM) halo propertie s. Using 1.5 million halos from three IllustrisTNG realizations of a LambdaCDM universe, we show that galaxy formation physics drives non-monotonic features (wiggles) into DM property statistics across six decades in halo mass, from dwarf galaxies to galaxy clusters. We characterize these features by extracting the halo mass-dependent statistics of five DM halo properties -- velocity dispersion, NFW concentration, density- and velocity-space shapes, and formation time -- using kernel-localized linear regression (KLLR). Comparing precise estimates of normalizations, slopes, and covariances between realizations with and without galaxy formation, we find systematic deviations across all mass-scales, with maximum deviations of 25% at the Milky-Way mass of 1e12 Msun. The mass-dependence of the wiggles is set by the interplay between different cooling and feedback mechanisms, and we discuss its observational implications. The property covariances depend strongly on halo mass and physics treatment, but the correlations are mostly robust. Using multivariate KLLR and interpretable machine learning, we show the halo concentration and velocity-space shape are principal contributors, at different mass, to the velocity dispersion variance. Statistics of mass accretion rate and DM surface pressure energy are provided in an appendix. We publicly release halo property catalogs and KLLR parameters for the TNG runs at twenty epochs up to z = 12.
In General Relativity (GR), the graviton is massless. However, a common feature in several theoretical alternatives of GR is a non-zero mass for the graviton. These theories can be described as massive gravity theories. Despite many theoretical compl exities in these theories, on phenomenological grounds, the implications of massive gravity have been widely used to put bounds on graviton mass. One of the generic implications of giving a mass to the graviton is that the gravitational potential will follow a Yukawa-like fall off. We use this feature of massive gravity theories to probe the mass of graviton by using the largest gravitationally bound objects, namely galaxy clusters. In this work, we use the mass estimates of galaxy clusters measured at various cosmologically defined radial distances measured via weak lensing (WL) and Sunyaev-Zeldovich (SZ) effect. We also use the model independent values of Hubble parameter $H(z)$ smoothed by a non-parametric method, Gaussian process. Within $1sigma$ confidence region, we obtain the mass of graviton $m_g < 5.9 times 10^{-30}$ eV with the corresponding Compton length scale $lambda_g > 6.82$ Mpc from weak lensing and $m_g < 8.31 times 10^{-30}$ eV with $lambda_g > 5.012$ Mpc from SZ effect. This analysis improves the upper bound on graviton mass obtained earlier from galaxy clusters.
222 - J. A. ZuHone 2014
Cold fronts -- contact discontinuities in the intracluster medium (ICM) of galaxy clusters -- should be disrupted by Kelvin-Helmholtz (K-H) instabilities due to the associated shear velocity. However, many observed cold fronts appear stable. This ope ns the possibility to place constraints on microphysical mechanisms that stabilize them, such as the ICM viscosity and/or magnetic fields. We performed exploratory high-resolution simulations of cold fronts arising from subsonic gas sloshing in cluster cores using the grid-based Athena MHD code, comparing the effects of isotropic Spitzer and anisotropic Braginskii viscosity (expected in a magnetized plasma). Magnetized simulations with full Braginskii viscosity or isotropic Spitzer viscosity reduced by a factor f ~ 0.1 are both in qualitative agreement with observations in terms of suppressing K-H instabilities. The RMS velocity of turbulence within the sloshing region is only modestly reduced by Braginskii viscosity. We also performed unmagnetized simulations with and without viscosity and find that magnetic fields have a substantial effect on the appearance of the cold fronts, even if the initial field is weak and the viscosity is the same. This suggests that determining the dominant suppression mechanism of a given cold front from X-ray observations (e.g. viscosity or magnetic fields) by comparison with simulations is not straightforward. Finally, we performed simulations including anisotropic thermal conduction, and find that including Braginskii viscosity in these simulations does not significant affect the evolution of cold fronts; they are rapidly smeared out by thermal conduction, as in the inviscid case.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا