ترغب بنشر مسار تعليمي؟ اضغط هنا

An impact of the metrics probabilistic distributions on the spatial geometry of the universe in quantum model

34   0   0.0 ( 0 )
 نشر من قبل Valentin Kuzmichev
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It is shown that the homogeneous and isotropic Universe is spatially flat in the limit which takes into account the moments of infinitely large orders of probabilistic distribution of a scale factor with respect to its mean value in the state with large quantum numbers. The quantum mechanism of fine tuning of the total energy density in the Universe to the critical value at the early stage of its evolution is proposed and the reason of possible small difference between these densities during the subsequent expansion is indicated. A comparison of the predictions of the quantum model with the real Universe is given.

قيم البحث

اقرأ أيضاً

We present a new algorithm that can reconstruct the full distributions of metric components within the class of spherically symmetric dust universes that may include a cosmological constant. The algorithm is capable of confronting this class of solut ions with arbitrary data and opens a new observational window to determine the value of the cosmological constant. In this work we use luminosity and age data to constrain the geometry of the universe up to a redshift of $z = 1.75$. We show that, although current data are perfectly compatible with homogeneous models of the universe, simple radially inhomogeneous void models that are sometimes used as alternative explanations for the apparent acceleration of the late time universe cannot yet be ruled out. In doing so we reconstruct the density of cold dark matter out to $z = 1.75$ and derive constraints on the metric components when the universe was 10.5 Gyr old within a comoving volume of approximately 1 Gpc$^{3}$.
The main purpose of the report is to provide some argumentation that three seemingly distinct approaches of 1. Giveon, Kutasov and Seiberg (hep-th/9806194); 2. Hemming, Keski-Vakkuri (hep-th/0110252); Maldacena, Ooguri (hep-th/0001053) and 3. I. Bars (hep-th/9503205) can be investigated by applying the mathematical methods of integral geometry on the Lobachevsky plane, developed previously by Gelfand, Graev and Vilenkin. All these methods can be used for finding the transformations, leaving the Kac-Moody and Virasoro algebras invariant. The near-distance limit of the Conformal Field Theory of the SL(2, R) WZW model of strings on an ADS3 background can also be interpreted in terms of the Lobachevsky Geometry : the non - euclidean distance is conserved and the Lobachevsky formulae for the angle of parallelism is recovered. Some preliminary technique from integral geometry for inverting the modified integral representation for the Kac- Moody algebra has been demonstrated.
Although the new era of high precision cosmology of the cosmic microwave background (CMB) radiation improves our knowledge to understand the infant as well as the presentday Universe, it also leads us to question the main assumption of the exact isot ropy of the CMB. There are two pieces of observational evidence that hint towards there being no exact isotropy. These are first the existence of small anisotropy deviations from isotropy of the CMB radiation and second, the presence of large angle anomalies, although the existence of these anomalies is currently a huge matter of debate. These hints are particularly important since isotropy is one of the two main postulates of the Copernican principle on which the FRW models are built. This almost isotropic CMB radiation implies that the universe is almost a FRW universe, as is proved by previous studies. Assuming the matter component forms the deviations from isotropy in the CMB density fluctuations when matter and radiation decouples, we here attempt to find possible constraints on the FRW type scale and Hubble parameter by using the Bianchi type I (BI) anisotropic model which is asymptotically equivalent to the standard FRW. To obtain constraints on such an anisotropic model, we derive average and late-time shear values that come from the anisotropy upper limits of the recent Planck data based on a model independent shear parameter of Maartens et al. (1995a,b) and from the theoretical consistency relation. These constraints lead us to obtain a BI model which becomes an almost-FRW model in time, and which is consistent with the latest observational data of the CMB.
We show that Gutzwillers characterization of chaotic Hamiltonian systems in terms of the curvature associated with a Riemannian metric tensor in the structure of the Hamiltonian can be extended to a wide class of potential models of standard form thr ough definition of a conformal metric. The geodesic equations reproduce the Hamilton equations of the original potential model when a transition is made to the dual manifold, and the geodesics in the dual space coincide with the orbits of the Hamiltonian potential model. We therefore find a direct geometrical description of the time development of a Hamiltonian potential model. The second covariant derivative of the geodesic deviation in this dual manifold generates a dynamical curvature, resulting in (energy dependent) criteria for unstable behavior different from the usual Lyapunov criteria. We discuss some examples of unstable Hamiltonian systems in two dimensions giving, in particular, detailed results for a potential obtained from a fifth order expansion of a Toda lattice Hamiltonian.
We study the quantum geometry of the fuzzy sphere defined as the angular momentum algebra $[x_i,x_j]=2imathlambda_p epsilon_{ijk}x_k$ modulo setting $sum_i x_i^2$ to a constant, using a recently introduced 3D rotationally invariant differential struc ture. Metrics are given by symmetric $3 times 3$ matrices $g$ and we show that for each metric there is a unique quantum Levi-Civita connection with constant coefficients, with scalar curvature $ frac{1}{2}({rm Tr}(g^2)-frac{1}{2}{rm Tr}(g)^2)/det(g)$. As an application, we construct Euclidean quantum gravity on the fuzzy unit sphere. We also calculate the charge 1 monopole for the 3D differential structure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا