ﻻ يوجد ملخص باللغة العربية
The growth of spiral mounds containing a screw dislocation is compared to the growth of wedding cakes by two-dimensional nucleation. Using phase field simulations and homoepitaxial growth experiments on the Pt(111) surface we show that both structures attain the same characteristic large scale shape when a significant step edge barrier suppresses interlayer transport. The higher vertical growth rate observed for the spiral mounds on Pt(111) reflects the different incorporation mechanisms for atoms in the top region and can be formally represented by an enhanced apparent step edge barrier.
Borophene, a monoatomic layer of boron atoms, stands out among two-dimensional (2D) materials, with its versatile properties of polymorphism, metallicity, plasmonics, superconductivity, tantalizing for physics exploration and next-generation devices.
The interest in Fe-chalcogenide unconventional superconductors is intense after the critical temperature of FeSe was reported enhanced by more than one order of magnitude in the monolayer limit at the interface to an insulating oxide substrate. In he
For more than three decades, measurement of terrace width distributions (TWDs) of vicinal crystal surfaces have been recognized as arguably the best way to determine the dimensionless strength $tilde{A}$ of the elastic repulsion between steps. For su
Deposition/removal of metal atoms on the hex reconstructed (100) surface of Au, Pt and Ir should present intriguing aspects, since a new island implies hex -> square deconstruction of the substrate, and a new crater the square -> hex reconstruction o
The melting and crystallization of Al50Ni50} are studied by means of molecular dynamics computer simulations, using a potential of the embedded atom type to model the interactions between the particles. Systems in a slab geometry are simulated where