ترغب بنشر مسار تعليمي؟ اضغط هنا

Coarsening in potential and nonpotential models of oblique stripe patterns

142   0   0.0 ( 0 )
 نشر من قبل Denis Boyer
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the coarsening of two-dimensional oblique stripe patterns by numerically solving potential and nonpotential anisotropic Swift-Hohenberg equations. Close to onset, all models exhibit isotropic coarsening with a single characteristic length scale growing in time as $t^{1/2}$. Further from onset, the characteristic lengths along the preferred directions $hat{x}$ and $hat{y}$ grow with different exponents, close to 1/3 and 1/2, respectively. In this regime, one-dimensional dynamical scaling relations hold. We draw an analogy between this problem and Model A in a stationary, modulated external field. For deep quenches, nonpotential effects produce a complicated dislocation dynamics that can lead to either arrested or faster-than-power-law growth, depending on the model considered. In the arrested case, small isolated domains shrink down to a finite size and fail to disappear. A comparison with available experimental results of electroconvection in nematics is presented.

قيم البحث

اقرأ أيضاً

We study the collective dynamics of colloidal suspensions in the presence of a time-dependent potential, by means of dynamical density functional theory. We consider a non-linear diffusion equation for the density and show that spatial patterns emerg e from a sinusoidal external potential with a time-dependent wavelength. These patterns are characterized by a sinusoidal density with the average wavelength and a Bessel-function envelope with an induced wavelength that depends only on the amplitude of the temporal oscillations. As a generalization of this result, we propose a design strategy to obtain a family of spatial patterns using time-dependent potentials of practically arbitrary shape.
The depletion force and depletion potential between two in principle unequal big hard spheres embedded in a multicomponent mixture of small hard spheres are computed using the Rational Function Approximation method for the structural properties of ha rd-sphere mixtures [S. B. Yuste, A. Santos, and M. Lopez de Haro, J. Chem. Phys. {bf 108}, 3683 (1998)]. The cases of equal solute particles and of one big particle and a hard planar wall in a background monodisperse hard-sphere fluid are explicitly analyzed. An improvement over the performance of the Percus-Yevick theory and good agreement with available simulation results are found
95 - L.-H. Tang , P. Smilauer , 1997
We propose deposition noise to be an important factor in unstable epitaxial growth of thin films. Our analysis yields a geometrical relation H=(RWL)^2 between the typical mound height W, mound size L, and the film thickness H. Simulations of realisti c systems show that the parameter R is a characteristic of the growth conditions, and generally lies in the range 0.2-0.7. The constancy of R in late-stage coarsening yields a scaling relation between the coarsening exponent 1/z and the mound height exponent beta which, in the case of saturated mound slope, gives beta = 1/z = 1/4.
The coupling-parameter method, whereby an extra particle is progressively coupled to the rest of the particles, is applied to the sticky-hard-sphere fluid to obtain its equation of state in the so-called chemical-potential route ($mu$ route). As a co nsistency test, the results for one-dimensional sticky particles are shown to be exact. Results corresponding to the three-dimensional case (Baxters model) are derived within the Percus-Yevick approximation by using different prescriptions for the dependence of the interaction potential of the extra particle on the coupling parameter. The critical point and the coexistence curve of the gas-liquid phase transition are obtained in the $mu$ route and compared with predictions from other thermodynamics routes and from computer simulations. The results show that the $mu$ route yields a general better description than the virial, energy, compressibility, and zero-separation routes.
We have studied the percolation behaviour of deposits for different (2+1)-dimensional models of surface layer formation. The mixed model of deposition was used, where particles were deposited selectively according to the random (RD) and ballistic (BD ) deposition rules. In the mixed one-component models with deposition of only conducting particles, the mean height of the percolation layer (measured in monolayers) grows continuously from 0.89832 for the pure RD model to 2.605 for the pure RD model, but the percolation transition belong to the same universality class, as in the 2- dimensional random percolation problem. In two- component models with deposition of conducting and isolating particles, the percolation layer height approaches infinity as concentration of the isolating particles becomes higher than some critical value. The crossover from 2d to 3d percolation was observed with increase of the percolation layer height.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا