ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing quantum vacuum geometrical effects with cold atoms

133   0   0.0 ( 0 )
 نشر من قبل Diego Dalvit
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The lateral Casimir-Polder force between an atom and a corrugated surface should allow one to study experimentally non trivial geometrical effects in quantum vacuum. Here, we derive the theoretical expression of this force in a scattering approach that accounts for the optical properties of the corrugated surface. We show that large corrections to the ``proximity force approximation could be measured using present-day technology with a Bose-Einstein condensate used as a vacuum field sensor.



قيم البحث

اقرأ أيضاً

Phenomenological models aiming to join gravity and quantum mechanics often predict effects that are potentially measurable in refined low-energy experiments. For instance, modified commutation relations between position and momentum, that accounts fo r a minimal scale length, yield a dynamics that can be codified in additional Hamiltonian terms. When applied to the paradigmatic case of a mechanical oscillator, such terms, at the lowest order in the deformation parameter, introduce a weak intrinsic nonlinearity and, consequently, deviations from the classical trajectory. This point of view has stimulated several experimental proposals and realizations, leading to meaningful upper limits to the deformation parameter. All such experiments are based on classical mechanical oscillators, i.e., excited from a thermal state. We remark indeed that decoherence, that plays a major role in distinguishing the classical from the quantum behavior of (macroscopic) systems, is not usually included in phenomenological quantum gravity models. However, it would not be surprising if peculiar features that are predicted by considering the joined roles of gravity and quantum physics should manifest themselves just on purely quantum objects. On the base of this consideration, we propose experiments aiming to observe possible quantum gravity effects on macroscopic mechanical oscillators that are preliminary prepared in a high purity state, and we report on the status of their realization.
We analyze the oscillations of Rydberg atoms in the framework of quantum field theory and we reveal non-trivial vacuum energy which has the equation of state of the dark matter. This energy is similar to that expected for mixed neutrinos and affects the thermal capacity of the gas. Therefore, the deflection of the thermal capacity of Rydberg atoms could prove the condensate structure of vacuum for mixing fermions and open new scenarios in the study of the dark components of the universe.
Trapped atomic ions enable a precise quantification of the flow of information between internal and external degrees of freedom by employing a non-Markovianity measure [H.-P. Breuer et al., Phys. Rev. Lett. 103, 210401 (2009)]. We reveal that the nat ure of projective measurements in quantum mechanics leads to a fundamental, nontrivial bias in this measure. We observe and study the functional dependence of this bias to permit a demonstration of applications of local quantum probing. An extension of our approach can act as a versatile reference, relevant for understanding complex systems.
159 - S. Diehl , A. Micheli (1 2008
An open quantum system, whose time evolution is governed by a master equation, can be driven into a given pure quantum state by an appropriate design of the system-reservoir coupling. This points out a route towards preparing many body states and non -equilibrium quantum phases by quantum reservoir engineering. Here we discuss in detail the example of a emph{driven dissipative Bose Einstein Condensate} of bosons and of paired fermions, where atoms in an optical lattice are coupled to a bath of Bogoliubov excitations via the atomic current representing emph{local dissipation}. In the absence of interactions the lattice gas is driven into a pure state with long range order. Weak interactions lead to a weakly mixed state, which in 3D can be understood as a depletion of the condensate, and in 1D and 2D exhibits properties reminiscent of a Luttinger liquid or a Kosterlitz-Thouless critical phase at finite temperature, with the role of the ``finite temperature played by the interactions.
The existence of minimal length scale has motivated the proposal of generalized uncertainty principle, which provides a potential routine to probe quantum gravitational effects in low-energy quantum mechanics experiment. Hitherto, the tabletop experi ment of testing deviations from ordinary quantum mechanics are mostly based on microscopic objects. However, the feasibility of these studies are challenged by the recent study of spacetime quantization for composite macroscopic body. In this paper, we propose a scheme to probe quantum gravity effects by revealing the deviations from predictions of Heisenberg uncertainty principle. Our scheme focus on manipulating the interaction sequences between external laser fields and a single trapped ion to seek evidence of spacetime quantization, therefore reduce the complicity induced by large bodies to some extent. The relevant study for microscopic particles is crucial considering the lack of satisfactory theories regarding basic properties for multi-particles in the framework of quantum gravity. Meanwhile, we are managed to set a new upper limit for deformation parameter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا