ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing quantum grav ity effects with ion trap

84   0   0.0 ( 0 )
 نشر من قبل Yue-Yue Chen
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The existence of minimal length scale has motivated the proposal of generalized uncertainty principle, which provides a potential routine to probe quantum gravitational effects in low-energy quantum mechanics experiment. Hitherto, the tabletop experiment of testing deviations from ordinary quantum mechanics are mostly based on microscopic objects. However, the feasibility of these studies are challenged by the recent study of spacetime quantization for composite macroscopic body. In this paper, we propose a scheme to probe quantum gravity effects by revealing the deviations from predictions of Heisenberg uncertainty principle. Our scheme focus on manipulating the interaction sequences between external laser fields and a single trapped ion to seek evidence of spacetime quantization, therefore reduce the complicity induced by large bodies to some extent. The relevant study for microscopic particles is crucial considering the lack of satisfactory theories regarding basic properties for multi-particles in the framework of quantum gravity. Meanwhile, we are managed to set a new upper limit for deformation parameter.



قيم البحث

اقرأ أيضاً

We propose a new experimental testbed that uses ions in the collective ground state of a static trap for studying the analog of quantum-field effects in cosmological spacetimes, including the Gibbons-Hawking effect for a single detector in de Sitter spacetime, as well as the possibility of modeling inflationary structure formation and the entanglement signature of de Sitter spacetime. To date, proposals for using trapped ions in analog gravity experiments have simulated the effect of gravity on the field modes by directly manipulating the ions motion. In contrast, by associating laboratory time with conformal time in the simulated universe, we can encode the full effect of curvature in the modulation of the laser used to couple the ions vibrational motion and electronic states. This model simplifies the experimental requirements for modeling the analog of an expanding universe using trapped ions and enlarges the validity of the ion-trap analogy to a wide range of interesting cases.
Phenomenological models aiming to join gravity and quantum mechanics often predict effects that are potentially measurable in refined low-energy experiments. For instance, modified commutation relations between position and momentum, that accounts fo r a minimal scale length, yield a dynamics that can be codified in additional Hamiltonian terms. When applied to the paradigmatic case of a mechanical oscillator, such terms, at the lowest order in the deformation parameter, introduce a weak intrinsic nonlinearity and, consequently, deviations from the classical trajectory. This point of view has stimulated several experimental proposals and realizations, leading to meaningful upper limits to the deformation parameter. All such experiments are based on classical mechanical oscillators, i.e., excited from a thermal state. We remark indeed that decoherence, that plays a major role in distinguishing the classical from the quantum behavior of (macroscopic) systems, is not usually included in phenomenological quantum gravity models. However, it would not be surprising if peculiar features that are predicted by considering the joined roles of gravity and quantum physics should manifest themselves just on purely quantum objects. On the base of this consideration, we propose experiments aiming to observe possible quantum gravity effects on macroscopic mechanical oscillators that are preliminary prepared in a high purity state, and we report on the status of their realization.
Trapped atomic ions enable a precise quantification of the flow of information between internal and external degrees of freedom by employing a non-Markovianity measure [H.-P. Breuer et al., Phys. Rev. Lett. 103, 210401 (2009)]. We reveal that the nat ure of projective measurements in quantum mechanics leads to a fundamental, nontrivial bias in this measure. We observe and study the functional dependence of this bias to permit a demonstration of applications of local quantum probing. An extension of our approach can act as a versatile reference, relevant for understanding complex systems.
143 - D. Kielpinski 2008
Atomic ions trapped in ultra-high vacuum form an especially well-understood and useful physical system for quantum information processing. They provide excellent shielding of quantum information from environmental noise, while strong, well-controlled laser interactions readily provide quantum logic gates. A number of basic quantum information protocols have been demonstrated with trapped ions. Much current work aims at the construction of large-scale ion-trap quantum computers using complex microfabricated trap arrays. Several groups are also actively pursuing quantum interfacing of trapped ions with photons.
Quantum information processing is steadily progressing from a purely academic discipline towards applications throughout science and industry. Transitioning from lab-based, proof-of-concept experiments to robust, integrated realizations of quantum in formation processing hardware is an important step in this process. However, the nature of traditional laboratory setups does not offer itself readily to scaling up system sizes or allow for applications outside of laboratory-grade environments. This transition requires overcoming challenges in engineering and integration without sacrificing the state-of-the-art performance of laboratory implementations. Here, we present a 19-inch rack quantum computing demonstrator based on $^{40}textrm{Ca}^+$ optical qubits in a linear Paul trap to address many of these challenges. We outline the mechanical, optical, and electrical subsystems. Further, we describe the automation and remote access components of the quantum computing stack. We conclude by describing characterization measurements relevant to digital quantum computing including entangling operations mediated by the Molmer-Sorenson interaction. Using this setup we produce maximally-entangled Greenberger-Horne-Zeilinger states with up to 24 ions without the use of post-selection or error mitigation techniques; on par with well-established conventional laboratory setups.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا