ترغب بنشر مسار تعليمي؟ اضغط هنا

Beyond Two Dark Energy Parameters

41   0   0.0 ( 0 )
 نشر من قبل Asantha R. Cooray
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Devdeep Sarkar




اسأل ChatGPT حول البحث

Our ignorance of the dark energy is generally described by a two-parameter equation of state. In these approaches a particular {it ad hoc} functional form is assumed, and only two independent parameters are incorporated. We propose a model-independent, multi-parameter approach to fitting the dark energy, and show that next-generation surveys will constrain the equation of state in three or more independent redshift bins to better than 10%. Future knowledge of the dark energy will surpass two numbers (e.g., [$w_0$,$w_1$] or [$w_0$,$w_a$]), and we propose a more flexible approach to the analysis of present and future data.

قيم البحث

اقرأ أيضاً

122 - Benjamin Shlaer 2017
We present a prototype model that resolves the cosmological constant problem using matter alone, i.e., without modifying gravity. Its generic cosmological solutions adjust an arbitrarily large, negative dark energy to a positive value parametrically suppressed by an initial field velocity. Inflationary initial conditions lead to a positive dark energy exponentially smaller in magnitude than any model parameter, or any scale in the initial conditions.
A large number of cosmological parameters have been suggested for obtaining information on the nature of dark energy. In this work, we study the efficacy of these different parameters in discriminating theoretical models of dark energy, using both cu rrently available supernova (SNe) data, and simulations of future observations. We find that the current data does not put strong constraints on the nature of dark energy, irrespective of the cosmological parameter used. For future data, we find that the although deceleration parameter can accurately reconstruct some dark energy models, it is unable to discriminate between different models of dark energy, therefore limiting its usefulness. Physical parameters such as the equation of state of dark energy, or the dark energy density do a good job of both reconstruction and discrimination if the matter density is known to high accuracy. However, uncertainty in matter density reduces the efficacy of these parameters. A recently proposed parameter, Om(z), constructed from the first derivative of the SNe data, works very well in discriminating different theoretical models of dark energy, and has the added advantage of not being dependent on the value of matter density. Thus we find that a cosmological parameter constructed from the first derivative of the data, for which the theoretical models of dark energy are sufficiently distant from each other, and which is independent of the matter density, performs the best in reconstructing dark energy from SNe data.
We apply in this paper the statefinder parameters to the interacting phantom energy with dark matter. There are two kinds of scaling solutions in this model. It is found that the evolving trajectories of these two scaling solutions in the statefinder parameter plane are quite different, and that are also different from the statefinder diagnostic of other dark energy models.
We introduce two new diagnostics of dark energy (DE). The first, Om, is a combination of the Hubble parameter and the cosmological redshift and provides a null test of dark energy being a cosmological constant. Namely, if the value of Om(z) is the sa me at different redshifts, then DE is exactly cosmological constant. The slope of Om(z) can differentiate between different models of dark energy even if the value of the matter density is not accurately known. For DE with an unevolving equation of state, a positive slope of Om(z) is suggestive of Phantom (w < -1) while a negative slope indicates Quintessence (w > -1). The second diagnostic, acceleration probe(q-probe), is the mean value of the deceleration parameter over a small redshift range. It can be used to determine the cosmological redshift at which the universe began to accelerate, again without reference to the current value of the matter density. We apply the Om and q-probe diagnostics to the Union data set of type Ia supernovae combined with recent data from the cosmic microwave background (WMAP5) and baryon acoustic oscillations.
We determine the best-fit values and confidence limits for dynamical dark energy parameters together with other cosmological parameters on the basis of different datasets which include WMAP9 or Planck-2013 results on CMB anisotropy, BAO distance rati os from recent galaxy surveys, magnitude-redshift relations for distant SNe Ia from SNLS3 and Union2.1 samples and the HST determination of the Hubble constant. We use a Markov Chain Monte Carlo routine to map out the likelihood in the multi-dimensional parameter space. We show that the most precise determination of cosmological parameters with the narrowest confidence limits is obtained for the Planck{+}HST{+}BAO{+}SNLS3 dataset. The best-fit values and 2$sigma$ confidence limits for cosmological parameters in this case are $Omega_{de}=0.718pm0.022$, $w_0=-1.15^{+0.14}_{-0.16}$, $c_a^2=-1.15^{+0.02}_{-0.46}$, $Omega_bh^2=0.0220pm0.0005$, $Omega_{cdm}h^2=0.121pm0.004$, $h=0.713pm0.027$, $n_s=0.958^{+0.014}_{-0.010}$, $A_s=(2.215^{+0.093}_{-0.101})cdot10^{-9}$, $tau_{rei}=0.093^{+0.022}_{-0.028}$. For this dataset, the $Lambda$CDM model is just outside the 2$sigma$ confidence region, while for the dataset WMAP9{+}HST{+}BAO{+}SNLS3 the $Lambda$CDM model is only 1$sigma$ away from the best fit. The tension in the determination of some cosmological parameters on the basis of two CMB datasets WMAP9 and Planck-2013 is highlighted.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا