ترغب بنشر مسار تعليمي؟ اضغط هنا

Possibility of a modification of life time of radioactive elements by magnetic monopoles

32   0   0.0 ( 0 )
 نشر من قبل Boris Kostenko F.
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A simple explanation of the fact that light magnetic monopoles have not been observed at accelerator experiments is given. It is based on a possibility of violation of C invariance in the electromagnetic interactions. Because of the difficulty of monopole registration, two interconnected problems arise: to formulate a theory describing monopole production (it should include a new force beyond the Standard Model of electroweak interaction), and to point the way to monopole observation. We consider a possibility, closely related to some experiments, of a modification of life time of radioactive elements by magnetic monopoles. The first part of the article is devoted to purely electromagnetic impact of monopoles, caused by the vertex M --> M + gamma. The second part, more speculative one, is based on experimental evidences in favour of the existence of some axial vector currents, responsible for a new force, which can stimulate, or suppress, decays of radioactive elements.

قيم البحث

اقرأ أيضاً

106 - L.N. Epele , H. Fanchiotti , C.A 2016
The announced ~ 3 {sigma} enhancement in the inclusive {gamma} {gamma} -spectrum at ~ 750 GeV made by the ATLAS and CMS collaborations at LHC might indicate the existence of a monopole-antimonopole bound state: monopolium. In here we revisit our calc ulation of 2012 from a more general perspective and see that this resonance, if confirmed, might be a first signal of the existence of magnetic monopoles.
MoEDAL is a pioneering experiment designed to search for highly ionising messengers of new physics such as magnetic monopoles or massive (pseudo-)stable charged particles, that are predicted to exist in a plethora of models beyond the Standard Model. Its ground-breaking physics program defines a number of scenarios that yield potentially revolutionary insights into such foundational questions as, are there extra dimensions or new symmetries, what is the mechanism for the generation of mass, does magnetic charge exist, what is the nature of dark matter, and, how did the big-bang develop at the earliest times. MoEDALs purpose is to meet such far-reaching challenges at the frontier of the field. The physics reach of the existing MoEDAL detector is discussed, giving emphasis on searches for magnetic monopoles, supersymmetric (semi)stable partners, doubly charged Higgs bosons, and exotic structures such as black-hole remnants in models with large extra spatial dimensions and D-matter in some brane theories.
We develop topological criteria for the existence of electroweak magnetic monopoles and Z-strings and extend the Kibble mechanism to study their formation during the electroweak phase transition. The distribution of magnetic monopoles produces magnet ic fields that have a spectrum $B_lambda propto lambda^{-2}$ where $lambda$ is a smearing length scale. Even as the magnetic monopoles annihilate due to the confining Z-strings, the magnetic field evolves with the turbulent plasma and may be relevant for cosmological observations.
134 - Bruno Machet 2010
We obtain the following analytical formula which describes the dependence of the electric potential of a point-like charge on the distance away from it in the direction of an external magnetic field B: Phi(z) = e/|z| [ 1- exp(-sqrt{6m_e^2}|z|) + exp( -sqrt{(2/pi) e^3 B + 6m_e^2} |z|) ]. The deviation from Coulombs law becomes essential for B > 3pi B_{cr}/alpha = 3 pi m_e^2/e^3 approx 6 10^{16} G. In such superstrong fields, electrons are ultra-relativistic except those which occupy the lowest Landau level (LLL) and which have the energy epsilon_0^2 = m_e^2 + p_z^2. The energy spectrum on which LLL splits in the presence of the atomic nucleus is found analytically. For B > 3 pi B_{cr}/alpha, it substantially differs from the one obtained without accounting for the modification of the atomic potential.
135 - B. Steffen 2009
The motion of pedestrian crowds (e.g. for simulation of an evacuation situation) can be modeled as a multi-body system of self driven particles with repulsive interaction. We use a few simple situations to determine the simplest allowed functional fo rm of the force function. More complexity may be necessary to model more complex situations. There are many unknown parameters to such models, which have to be adjusted correctly. The parameters can be related to quantities that can be measured independently, like step length and frequency. The microscopic behavior is, however, only poorly reproduced in many situations, a person approaching a standing or slow obstacle will e.g. show oscillations in position, and the trajectories of two persons meeting in a corridor in opposite direction will be far from realistic and somewhat erratic. This is inpart due to the assumption of instantaneous reaction on the momentary situation. Obviously, persons react with a small time lag, while on the other hand they will anticipate changing situations for at least a short time. Thus basing the repulsive interaction on a (linear) extrapolation over a short time (e.g. 1 s) eliminates the oscillations at slowing down and smoothes the patterns of giving way to others to a more realistic behavior. A second problem is the additive combination of binary interactions. It is shown that combining only a few relevant interactions gives better model performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا