ﻻ يوجد ملخص باللغة العربية
We have utilized neutron powder diffraction to probe the crystal structure of layered Na$_{x}$CoO$_{2}$ near the half doping composition of $x=$0.46 over the temperature range of 2 to 600K. Our measurements show evidence of a dynamic transition in the motion of Na-ions at 300K which coincides with the onset of a near zero thermal expansion in the in-plane lattice constants. The effect of the Na-ordering on the CoO$_{2}$ layer is reflected in the octahedral distortion of the two crystallographically inequivalent Co-sites and is evident even at high temperatures. We find evidence of a weak charge separation into stripes of Co$^{+3.5+epsilon}$ and Co$^{+3.5-epsilon}$, $epsilonsim0.06e$ below Tco=150K. We argue that changes in the Na(1)-O bond lengths observed at the magnetic transition at tm=88K reflect changes in the electronic state of the CoO$_{2}$ layer
We have synthesized and characterized four different stable phases of Na ordered Na$_{x}$CoO$_{2}$, for $0.65<x<0.8$. Above 100 K they display similar Curie-Weiss susceptibilities as well as ferromagnetic $q=0$ spin fluctuations in the CoO$_{2}$ plan
We probed the local electronic properties of the mixed-valent Co(+4-x) triangular-lattice in Na{x}CoO{2}-yH{2}O by 59-Co NMR. We observed two distinct types of Co sites for x>=1/2, but the valence seems averaged out for x~1/3. Local spin fluctuations
We have synthesized and characterized the four different stable phases of Na ordered Na$_{x}$CoO$_{2}$, for $0.65<xlesssim 0.75$. Above 100K they display similar Curie-Weiss spin susceptibilities as well as ferromagnetic $q=0$ spin fluctuations in th
We have synthesized and characterized different stable phases of sodium cobaltates Na$_{x}$CoO$_{2}$ with sodium content $0.65<x<0.80$. We demonstrate that $^{23}$Na NMR allows to determine the difference in the susceptibility of the phases and revea
Combining symmetry based considerations with inputs from available experimental results, we make the case that a novel spin-triplet superconductivity triggered by antiferromagnetic fluctuations may be realized in the newly discovered layered cobaltid