ترغب بنشر مسار تعليمي؟ اضغط هنا

Emergent charge ordering in near half doped Na$_{0.46}$CoO$_{2}$

215   0   0.0 ( 0 )
 نشر من قبل Dimitri N. Argyriou
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have utilized neutron powder diffraction to probe the crystal structure of layered Na$_{x}$CoO$_{2}$ near the half doping composition of $x=$0.46 over the temperature range of 2 to 600K. Our measurements show evidence of a dynamic transition in the motion of Na-ions at 300K which coincides with the onset of a near zero thermal expansion in the in-plane lattice constants. The effect of the Na-ordering on the CoO$_{2}$ layer is reflected in the octahedral distortion of the two crystallographically inequivalent Co-sites and is evident even at high temperatures. We find evidence of a weak charge separation into stripes of Co$^{+3.5+epsilon}$ and Co$^{+3.5-epsilon}$, $epsilonsim0.06e$ below Tco=150K. We argue that changes in the Na(1)-O bond lengths observed at the magnetic transition at tm=88K reflect changes in the electronic state of the CoO$_{2}$ layer



قيم البحث

اقرأ أيضاً

We have synthesized and characterized four different stable phases of Na ordered Na$_{x}$CoO$_{2}$, for $0.65<x<0.8$. Above 100 K they display similar Curie-Weiss susceptibilities as well as ferromagnetic $q=0$ spin fluctuations in the CoO$_{2}$ plan es revealed by $^{23}$Na NMR data. In all phases from $^{59}$Co NMR data we display evidences that the Co disproportionate already above 300 K into non magnetic Co$^{3+}$ and magnetic $approx $Co$^{3.5+}$ sites on which holes delocalize. This allows us to understand that metallic magnetism is favored for these large Na contents. Below 100 K the phases differentiate, and a magnetic order sets in only for $xgtrsim 0.75$ at $T_{N}=$22 K. We suggest that the charge order also governs the low $T$ energy scales and transverse couplings.
205 - F.L. Ning , T. Imai , B.W. Statt 2004
We probed the local electronic properties of the mixed-valent Co(+4-x) triangular-lattice in Na{x}CoO{2}-yH{2}O by 59-Co NMR. We observed two distinct types of Co sites for x>=1/2, but the valence seems averaged out for x~1/3. Local spin fluctuations exhibit qualitatively the same trend down to ~100 K regardless of the carrier-concentration x, and hence the nature of the electronic ground state. A canonical Fermi-liquid behavior emerges below ~100 K only for x~1/3.
We have synthesized and characterized the four different stable phases of Na ordered Na$_{x}$CoO$_{2}$, for $0.65<xlesssim 0.75$. Above 100K they display similar Curie-Weiss spin susceptibilities as well as ferromagnetic $q=0$ spin fluctuations in th e CoO$_{2}$ planes revealed respectively by $^{23}$Na NMR shift and spin lattice $T_{1}$ data. The Co disproportionate already above 300K into Co$^{3+}$ and $approx $Co$^{3.5+}$ in all phases, which allows us to understand that magnetism is favoured. Below 100K the paramagnetic properties become quite distinct, and a 3D magnetic order sets in only for $x=0.75$, so that charge order has a subtle incidence on the low $T$ energy scales and transverse magnetic couplings.
We have synthesized and characterized different stable phases of sodium cobaltates Na$_{x}$CoO$_{2}$ with sodium content $0.65<x<0.80$. We demonstrate that $^{23}$Na NMR allows to determine the difference in the susceptibility of the phases and revea ls the presence of Na order in each phase. $^{59}$Co NMR experiments give clear evidence that Co charge disproportionation is a dominant feature of Na cobaltates. Only a small fraction ($approx$ 25%) of cobalts are in a non-magnetic Co$^{3+}$ charge state whereas electrons delocalize on the other cobalts. The magnetic and charge properties of the different Co sites are highly correlated with each other as their magnetic shift $K_{ZZ}$ scales linearly with their quadrupolar frequency $nu_Q$. This reflects the fact that the hole content on the Co orbitals varies from site to site. The unusual charge differentiation found in this system calls for better theoretical understanding of the incidence of the Na atomic order on the electronic structures of these compounds.
Combining symmetry based considerations with inputs from available experimental results, we make the case that a novel spin-triplet superconductivity triggered by antiferromagnetic fluctuations may be realized in the newly discovered layered cobaltid e Na$_x$CoO$_{2}cdot y$H$_2$O. In the proposed picture, unaccessable via resonating-valence-bond physics extrapolated from half-filling, the pairing process is similar to that advanced for Sr$_{2}$RuO$_4$, but enjoys a further advantage coming from the hexagonal structure of the Fermi-surface which gives a stronger pairing tendency.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا