ترغب بنشر مسار تعليمي؟ اضغط هنا

Influence of charge order on the magnetic properties of Na$_{x}$CoO$_{2}$ for $x>0.65$

88   0   0.0 ( 0 )
 نشر من قبل Irek Mukhamedshin
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have synthesized and characterized the four different stable phases of Na ordered Na$_{x}$CoO$_{2}$, for $0.65<xlesssim 0.75$. Above 100K they display similar Curie-Weiss spin susceptibilities as well as ferromagnetic $q=0$ spin fluctuations in the CoO$_{2}$ planes revealed respectively by $^{23}$Na NMR shift and spin lattice $T_{1}$ data. The Co disproportionate already above 300K into Co$^{3+}$ and $approx $Co$^{3.5+}$ in all phases, which allows us to understand that magnetism is favoured. Below 100K the paramagnetic properties become quite distinct, and a 3D magnetic order sets in only for $x=0.75$, so that charge order has a subtle incidence on the low $T$ energy scales and transverse magnetic couplings.

قيم البحث

اقرأ أيضاً

We have synthesized and characterized four different stable phases of Na ordered Na$_{x}$CoO$_{2}$, for $0.65<x<0.8$. Above 100 K they display similar Curie-Weiss susceptibilities as well as ferromagnetic $q=0$ spin fluctuations in the CoO$_{2}$ plan es revealed by $^{23}$Na NMR data. In all phases from $^{59}$Co NMR data we display evidences that the Co disproportionate already above 300 K into non magnetic Co$^{3+}$ and magnetic $approx $Co$^{3.5+}$ sites on which holes delocalize. This allows us to understand that metallic magnetism is favored for these large Na contents. Below 100 K the phases differentiate, and a magnetic order sets in only for $xgtrsim 0.75$ at $T_{N}=$22 K. We suggest that the charge order also governs the low $T$ energy scales and transverse couplings.
We have synthesized and characterized different stable phases of sodium cobaltates Na$_{x}$CoO$_{2}$ with sodium content $0.65<x<0.80$. We demonstrate that $^{23}$Na NMR allows to determine the difference in the susceptibility of the phases and revea ls the presence of Na order in each phase. $^{59}$Co NMR experiments give clear evidence that Co charge disproportionation is a dominant feature of Na cobaltates. Only a small fraction ($approx$ 25%) of cobalts are in a non-magnetic Co$^{3+}$ charge state whereas electrons delocalize on the other cobalts. The magnetic and charge properties of the different Co sites are highly correlated with each other as their magnetic shift $K_{ZZ}$ scales linearly with their quadrupolar frequency $nu_Q$. This reflects the fact that the hole content on the Co orbitals varies from site to site. The unusual charge differentiation found in this system calls for better theoretical understanding of the incidence of the Na atomic order on the electronic structures of these compounds.
$^{59}$Co NMR experiments have been performed on single crystals of the layered cobaltate Na$_{x}$CoO$_{2}$ with x=0.77 which is an antiferromagnet with Neel temperature $T_{N}=22$~K. In this metallic phase six Co sites are resolved in the NMR spectr a, with distinct quadrupole frequencies $ u _{Q}$, magnetic shifts $K_{ZZ}$ and nuclear spin lattice relaxation rates $% 1/T_{1}$. Contrary to the $x=1/2$ or $x=2/3$ phases the 3D stacking of the Na planes is not perfect for $x=0.77$ but this does not influence markedly the electronic properties. We evidence that the magnetic and charge properties of the Co sites are highly correlated with each other as $K_{ZZ}$ and $(1/T_{1})^{1/2}$ scale linearly with $ u _{Q}$. The data analysis allows us to separate the contribution $ u_{Q}^{latt}$ of the ionic charges to $ u _{Q}$ from that $ u _{Q}^{el}$ due to the hole orbitals on the Co sites. We could extend coherently this analysis to all the known phases in the Na cobaltate phase diagram. The variation with $x$ of $ u _{Q}^{latt}$ is found to fit rather well numerical computations done in a point charge model. The second term $ u _{Q}^{el}$ allowed us to deduce the hole concentration on the cobalts. These detailed experimental results should stimulate theoretical calculations of the electronic structure involving both the Co orbital configurations and DMFT approaches to take into account the electronic correlations.
We have synthesized various samples of the $x=2/3$ phase of sodium cobaltate Na$_{x}$CoO$_{2}$ and performed X-ray powder diffractions spectra to compare the diffraction with the structure proposed previously from NMR/NQR experiments [H. Alloul emph{ et al.}, EPL textbf{85}, 47006 (2009)]. Rietveld analysis of the data are found in perfect agreement with those, and confirm the concentration x=2/3 obtained in the synthesis procedure. They even give indications on the atomic displacements of Na inside the unit cell. The detailed NQR data allow us to identify the NQR transitions and electric field gradient (EFG) parameters for 4 cobalt sites and 3 Na sites. The spin-lattice and spin-spin relaxation rates are found much smaller for the non-magnetic Co$^{3+}$ sites than for the magnetic sites on which the holes are delocalized. The atomic ordering of the Na layers is therefore at the source of this ordered distribution of cobalt charges. The method used here to resolve the Na ordering and the subsequent Co charge order can be used valuably for other concentrations of Na.
205 - F.L. Ning , T. Imai , B.W. Statt 2004
We probed the local electronic properties of the mixed-valent Co(+4-x) triangular-lattice in Na{x}CoO{2}-yH{2}O by 59-Co NMR. We observed two distinct types of Co sites for x>=1/2, but the valence seems averaged out for x~1/3. Local spin fluctuations exhibit qualitatively the same trend down to ~100 K regardless of the carrier-concentration x, and hence the nature of the electronic ground state. A canonical Fermi-liquid behavior emerges below ~100 K only for x~1/3.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا