ترغب بنشر مسار تعليمي؟ اضغط هنا

More Visible Effects of the Hidden Sector

84   0   0.0 ( 0 )
 نشر من قبل Hitoshi Murayama
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

There is a growing appreciation that hidden sector dynamics may affect the supersymmetry breaking parameters in the visible sector (supersymmetric standard model), especially when the dynamics is strong and superconformal. We point out that there are effects that have not been previously discussed in the literature. For example, the gaugino masses are suppressed relative to the gravitino mass. We discuss their implications in the context of various mediation mechanisms. The issues discussed include anomaly mediation with singlets, the mu (B mu) problem in gauge and gaugino mediation, and distinct mass spectra for the superparticles that have not been previously considered.



قيم البحث

اقرأ أيضاً

We discuss the visibility of gamma lines from dark matter annihilation. We point out a class of theories for dark matter which predict the existence of gamma lines with striking features. In these theories, the final state radiation processes are hig hly suppressed and one could distinguish easily the gamma lines from the continuum spectrum. We discuss the main experimental bounds and show that one could test the predictions for gamma lines in the near future in the context of simple gauge theories for dark matter.
We consider the extension of the Standard Model (SM) with a strongly interacting QCD-like hidden sector, at least two generations of right-handed neutrinos and one scalar singlet. Once scalar singlet obtains a nonzero vacuum expectation value, active neutrino masses are generated through type-I seesaw mechanism. Simultaneously, the electroweak scale is generated through the radiative corrections involving these massive fermions. This is the essence of the scenario that is known as the neutrino option for which the successful masses of right-handed neutrinos are in the range $10^7-10^8$ GeV. The main goal of this work is to scrutinize the potential to accommodate dark matter in such a realization. The dark matter candidates are Nambu-Goldstone bosons which appear due to the dynamical breaking of the hidden chiral symmetry. The mass spectrum studied in this work is such that masses of Nambu-Goldstone bosons and singlet scalar exceed those of right-handed neutrinos. Having the masses of all relevant particles several orders of magnitude above $mathcal{O}$(TeV), the freeze-out of dark matter is not achievable and hence we turn to alternative scenarios, namely freeze-in. The Nambu-Goldstone bosons can interact with particles that are not in SM but, however, have non-negligible abundance through their not-too-small couplings with SM. Utilizing this, we demonstrate that the dark matter in the model is successfully produced at temperature scale where the right-handed neutrinos are still stable. We note that the lepton number asymmetry sufficient for the generation of observable baryon asymmetry of the Universe can be produced in right-handed neutrino decays. Hence, we infer that the model has the potential to simultaneously address several of the most relevant puzzles in contemporary high-energy physics.
We provide a novel explanation to the muon $g-2$ excess with new physics contributions at the two-loop level. In this scenario, light millicharged particles are introduced to modify the photon vacuum polarization that contributes to muon $g-2$ at one additional loop. The muon $g-2$ excess can be explained with the millicharged particle mass $m_chi$ around 10 MeV and the product of the multiplicity factor and millicharge squared of $N_chi varepsilon^2 sim 10^{-3}$. The minimal model faces severe constraints from direct searches at fixed-target experiments and astrophysical observables. However, if the millicharged particles are also charged under a hidden confining gauge group $SU(N_chi)$ with a confinement scale of MeV, hidden-sector hadrons are unstable and can decay into neutrinos, which makes this scenario consistent with existing constraints. This explanation can be well tested at low-energy lepton colliders such as BESIII and Belle II as well as other proposed fixed-target experiments.
We combine the notion of asymptotic safety (AS) with conformal invariance in a hidden sector beyond the Standard Model. We use the renormalization group (RG) equations as a bridge to connect UV boundary conditions and EW/TeV scale physics and furnish a detailed example in the context of a leptophobic $U(1)$ model. A broad selection of UV boundary conditions are formulated corresponding to differing AS scenarios, and we find an AS scenario with very strong predictive power, allowing unique determination of most of the parameters in the model. We obtain the interrelationships among the couplings, the transition scale of the fixed point $M_{UV}$ and the generations of quarks coupled to the $Z$, and especially the correlation between $M_{UV}$ and the top quark Yukawa coupling $Y_t$. Several phenomenological implications of our results are presented for selected $Z$ masses.
57 - P. Mermod 2017
High-intensity proton beams impinging on a fixed target or beam dump allow to probe new physics via the production of new weakly-coupled particles in hadron decays. The CERN SPS provides opportunities to do so with the running NA62 experiment and the planned SHiP experiment. Reconstruction of kaon decay kinematics (beam mode) allows NA62 to probe for the existence of right-handed neutrinos and dark photons with masses below 0.45 GeV. Direct reconstruction of displaced vertices from the decays of new neutral particles (dump mode) will allow NA62 and SHiP to probe right-handed neutrinos with masses up to 5 GeV and mixings down to several orders of magnitude smaller than current constraints, in regions favoured in models which explain at once neutrino masses, matter-antimatter asymmetry and dark matter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا