ﻻ يوجد ملخص باللغة العربية
We present molecular-line observations of 94 dark cloud cores identified in the Pipe nebula through near-IR extinction mapping. Using the Arizona Radio Observatory 12m telescope, we obtained spectra of these cores in the J=1-0 transition of C18O. We use the measured core parameters, i.e., antenna temperature, linewidth, radial velocity, radius and mass, to explore the internal kinematics of these cores as well as their radial motions through the larger molecular cloud. We find that the vast majority of the dark extinction cores are true cloud cores rather than the superposition of unrelated filaments. While we identify no significant correlations between the cores internal gas motions and the cores other physical parameters, we identify spatially correlated radial velocity variations that outline two main kinematic components of the cloud. The largest is a 15pc long filament that is surprisingly narrow both in spatial dimensions and in radial velocity. Beginning in the Stem of the Pipe, this filament displays uniformly small C18O linewidths (dv~0.4kms-1) as well as core to core motions only slightly in excess of the gas sound speed. The second component outlines what appears to be part of a large (2pc; 1000 solar mass) ring-like structure. Cores associated with this component display both larger linewidths and core to core motions than in the main cloud. The Pipe Molecular Ring may represent a primordial structure related to the formation of this cloud.
In this paper we present the results of a systematic investigation of an entire population of starless dust cores within a single molecular cloud. Analysis of extinction data shows the cores to be dense objects characterized by a narrow range of dens
Recent extinction studies of the Pipe Nebula (d=130 pc) reveal many cores spanning a range in mass from 0.2 to 20.4 Msun. These dense cores were identified via their high extinction and comprise a starless population in a very early stage of developm
The detailed magnetic field structure of the starless dense core CB81 (L1774, Pipe 42) in the Pipe Nebula was determined based on near-infrared polarimetric observations of background stars to measure dichroically polarized light produced by magnetic
We present Very Large Array continuum observations made at 8.3 GHz toward the dense core B59, in the Pipe Nebula. We detect six compact sources, of which five are associated with the five most luminous sources at 70 micrometer in the region, while th
We use R-band CCD linear polarimetry collected for about 12000 background field stars in 46 fields of view toward the Pipe nebula to investigate the properties of the polarization across this dark cloud. Based on archival 2MASS data we estimate that