ترغب بنشر مسار تعليمي؟ اضغط هنا

Data formats for numerical relativity waves

100   0   0.0 ( 0 )
 نشر من قبل Mark Hannam
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This document proposes data formats to exchange numerical relativity results, in particular gravitational waveforms. The primary goal is to further the interaction between gravitational-wave source modeling groups and the gravitational-wave data-analysis community. We present a simple and extendable format which is applicable to various kinds of gravitational wave sources including binaries of compact objects and systems undergoing gravitational collapse, but is nevertheless sufficiently general to be useful for other purposes.

قيم البحث

اقرأ أيضاً

A numerical-relativity calculation yields in general a solution of the Einstein equations including also a radiative part, which is in practice computed in a region of finite extent. Since gravitational radiation is properly defined only at null infi nity and in an appropriate coordinate system, the accurate estimation of the emitted gravitational waves represents an old and non-trivial problem in numerical relativity. A number of methods have been developed over the years to extract the radiative part of the solution from a numerical simulation and these include: quadrupole formulas, gauge-invariant metric perturbations, Weyl scalars, and characteristic extraction. We review and discuss each method, in terms of both its theoretical background as well as its implementation. Finally, we provide a brief comparison of the various methods in terms of their inherent advantages and disadvantages.
This lecture is devoted to the problem of computing initial data for the Cauchy problem of 3+1 general relativity. The main task is to solve the constraint equations. The conformal technique, introduced by Lichnerowicz and enhanced by York, is presen ted. Two standard methods, the conformal transverse-traceless one and the conformal thin sandwich, are discussed and illustrated by some simple examples. Finally a short review regarding initial data for binary systems (black holes and neutron stars) is given.
We demonstrate that evolutions of three-dimensional, strongly non-linear gravitational waves can be followed in numerical relativity, hence allowing many interesting studies of both fundamental and observational consequences. We study the evolution o f time-symmetric, axisymmetric {it and} non-axisymmetric Brill waves, including waves so strong that they collapse to form black holes under their own self-gravity. The critical amplitude for black hole formation is determined. The gravitational waves emitted in the black hole formation process are compared to those emitted in the head-on collision of two Misner black holes.
We present a new study of remnant black hole properties from 13 binary black hole systems, numerically evolved using the Spectral Einstein Code. The mass, spin, and recoil velocity of each remnant were determined quasi-locally from apparent horizon d ata and asymptotically from Bondi data $(h, psi_4, psi_3, psi_2, psi_1)$ computed at future null infinity using SpECTREs Cauchy characteristic evolution. We compare these independent measurements of the remnant properties in the bulk and on the boundary of the spacetime, giving insight into how well asymptotic data are able to reproduce local properties of the remnant black hole in numerical relativity. We also discuss the theoretical framework for connecting horizon quantities to asymptotic quantities and how it relates to our results. This study recommends a simple improvement to the recoil velocities reported in the Simulating eXtreme Spacetimes waveform catalog, provides an improvement to future surrogate remnant models, and offers new analysis techniques for evaluating the physical accuracy of numerical simulations.
Gravitational waves deliver information in exquisite detail about astrophysical phenomena, among them the collision of two black holes, a system completely invisible to the eyes of electromagnetic telescopes. Models that predict gravitational wave si gnals from likely sources are crucial for the success of this endeavor. Modeling binary black hole sources of gravitational radiation requires solving the Eintein equations of General Relativity using powerful computer hardware and sophisticated numerical algorithms. This proceeding presents where we are in understanding ground-based gravitational waves resulting from the merger of black holes and the implications of these sources for the advent of gravitational-wave astronomy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا