ﻻ يوجد ملخص باللغة العربية
Spin-transfer torque in asymmetric spin valves can destabilize both parallel and antiparallel configurations and can lead to precessional modes also in the absence of an external magnetic field. We find a bistable precessional regime in such systems and show that thermal fluctuations can excite transitions (telegraph noise) between the corresponding oscillatory regimes that are well separated by irreversible paths at low temperatures. Because of the thermally induced transitions, the frequency of the resulting current-driven oscillations is different from that obtained at very low temperatures. We also show that the power spectrum in the bistable region is dominated by the out-of-plane oscillatory mode.
Spin transfer torque in spin valves usually destabilizes one of the collinear configurations (either parallel or antiparallel) and stabilizes the second one. Apart from this, balance of the spin-transfer and damping torques can lead to steady precess
The charge and spin diffusion equations taking into account spin-flip and spin-transfer torque were numerically solved using a finite element method in complex non-collinear geometry with strongly inhomogeneous current flow. As an illustration, spin-
Spin-transfer torque and current induced spin dynamics in spin-valve nanopillars with the free magnetic layer located between two magnetic films of fixed magnetic moments is considered theoretically. The spin-transfer torque in the limit of diffusive
The spin injection and accumulation in metallic lateral spin valves with transparent interfaces is studied using d.c. injection current. Unlike a.c.-based techniques, this allows investigating the effects of the direction and magnitude of the injecte
We investigate the influence of thermal energy on the current flow and electron spin states in double quantum dots in series. The quadruplet Pauli spin blockade, which is caused by the quadruplet and doublet states, occurs at low temperatures affecti