ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-dimensional Hubbard Model in the presence of lattice distortions

39   0   0.0 ( 0 )
 نشر من قبل Carlos Lamas
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف C.A. Lamas




اسأل ChatGPT حول البحث

The two-dimensional Hubbard model on the square lattice is studied in the presence of lattice distortions in the adiabatic approximation. The self energy is computed within perturbation theory up to second order, which provides a way for studying the quasiparticle dispersion. We compute numerically the second order contribution to the self-energy using a standard Fast Fourier Transform Algorithm for finite system sizes. The stability of the lattice distortions is investigated and a schematic phase diagram is drawn. The Fermi surface is analyzed for densities near to half filling, the presence of lattice distortion change some spectral properties of the model and gives an anisotropic interacting FS. The spectral function is calculated along several lines in momentum space and the renormalized quasiparticle dispersion is obtained. The behavior of the density of states is shown for different values of the intrasite repulsion U in the different phases.

قيم البحث

اقرأ أيضاً

341 - K. Bouadim , N. Paris , F. Hebert 2007
We investigate the phases of the ionic Hubbard model in a two-dimensional square lattice using determinant quantum Monte Carlo (DQMC). At half-filling, when the interaction strength or the staggered potential dominate we find Mott and band insulators , respectively. When these two energies are of the same order we find a metallic region. Charge and magnetic structure factors demonstrate the presence of antiferromagnetism only in the Mott region, although the externally imposed density modulation is present everywhere in the phase diagram. Away from half-filling, other insulating phases are found. Kinetic energy correlations do not give clear signals for the existence of a bond-ordered phase.
We analyze the dynamical nearest-neighbor and next-nearest-neighbor spin correlations in the 4-site and 8-site dynamical cluster approximation to the two-dimensional Hubbard model. Focusing on the robustness of these correlations at long imaginary ti mes, we reveal enhanced ferromagnetic correlations on the lattice diagonal, consistent with the emergence of composite spin-1 moments at a temperature scale that essentially coincides with the pseudo-gap temperature $T^*$. We discuss these results in the context of the spin-freezing theory of unconventional superconductivity.
Electrons in artificial lattices enable explorations of the impact of repulsive Coulomb interactions in a tunable system. We have trapped two-dimensional electrons belonging to a gallium arsenide quantum well in a nanofabricated lattice with honeycom b geometry. We probe the excitation spectrum in a magnetic field identifying novel collective modes that emerge from the Coulomb interaction in the artificial lattice as predicted by the Mott-Hubbard model. These observations allow us to determine the Hubbard gap and suggest the existence of a novel Coulomb-driven ground state. This approach offers new venues for the study of quantum phenomena in a controllable solid-state system.
We study the competition between stripe states with different periods and a uniform $d$-wave superconducting state in the extended 2D Hubbard model at 1/8 hole doping using infinite projected entangled-pair states (iPEPS). With increasing strength of negative next-nearest neighbor hopping $t$, the preferred period of the stripe decreases. For the values of $t$ predicted for cuprate high-T$_c$ superconductors, we find stripes with a period 4 in the charge order, in agreement with experiments. Superconductivity in the period 4 stripe is suppressed at $1/8$ doping. Only at larger doping, $0.18 lesssim delta < 0.25$, the period 4 stripe exhibits coexisting $d$-wave superconducting order. The uniform $d$-wave state is only favored for sufficiently large positive $t$.
The repulsive Fermi Hubbard model on the square lattice has a rich phase diagram near half-filling (corresponding to the particle density per lattice site $n=1$): for $n=1$ the ground state is an antiferromagnetic insulator, at $0.6 < n lesssim 0.8$, it is a $d_{x^2-y^2}$-wave superfluid (at least for moderately strong interactions $U lesssim 4t$ in terms of the hopping $t$), and the region $1-n ll 1$ is most likely subject to phase separation. Much of this physics is preempted at finite temperatures and to an extent driven by strong magnetic fluctuations, their quantitative characteristics and how they change with the doping level being much less understood. Experiments on ultra-cold atoms have recently gained access to this interesting fluctuation regime, which is now under extensive investigation. In this work we employ a self-consistent skeleton diagrammatic approach to quantify the characteristic temperature scale $T_{M}(n)$ for the onset of magnetic fluctuations with a large correlation length and identify their nature. Our results suggest that the strongest fluctuations---and hence highest $T_{M}$ and easiest experimental access to this regime---are observed at $U/t approx 4-6$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا