ترغب بنشر مسار تعليمي؟ اضغط هنا

Zooming into the large circumstellar disk in M 17

206   0   0.0 ( 0 )
 نشر من قبل Markus Nielbock
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper has been withdrawn by the authors.

قيم البحث

اقرأ أيضاً

HH 50138 is one of the brightest B[e] stars at a distance of $sim$ 380 pc with strong infrared excess. The star was observed in [O I] 63 $mu$m and [C II] 158 $mu$m with high velocity resolution with upGREAT on SOFIA. The velocity resolved [O I] emiss ion provides evidence for a large gas-disk, $sim$ 760 au in size, around HD 50138. Whereas previous interferometric observations give strong evidence for a hot gas and dust disk in Keplerian rotation, our bservations are the first to provide unambiguous evidence for a large warm disk around the star. Herschel/PACS observations showed that the [C II] emission is extended, therefore the [C II] emission most likely originates in an ionized gas shell created by a past outflow event. We confirm the isolated nature of HD 50138. It is far from any star forming region and has low proper motion. Neither is there any sign of a remnant cloud from which it could have formed. The extended disk around the star appears carbon poor. It shows OH and [O I] emission, but no CO. The CO abundance appears to be at least an order of magnitude lower than that of OH. Furthermore $^{13}$CO is enriched by more than a factor of five, confirming that the star is not a Herbig Be star. Finally we note that our high spectral resolution [O I] and [C II] observations provide a very accurate heliocentric velocity of the star, 40.8 $pm$ 0.2 km~s$^{-1}$.
Very few molecular species have been detected in circumstellar disks surrounding young stellar objects. We are carrying out an observational study of the chemistry of circumstellar disks surrounding T Tauri and Herbig Ae stars. First results of this study are presented in this note. We used the EMIR receivers recently installed at the IRAM 30m telescope to carry a sensitive search for molecular lines in the disks surrounding AB Aur, DM Tau, and LkCa 15. We detected lines of the molecules HCO+, CN, H2CO, SO, CS, and HCN toward AB Aur. In addition, we tentatively detected DCO+ and H2S lines. The line profiles suggest that the CN, HCN, H2CO, CS and SO lines arise in the disk. This makes it the first detection of SO in a circumstellar disk. We have unsuccessfully searched for SO toward DM Tau and LkCa 15, and for c-C3H2 toward AB Aur, DM Tau, and LkCa 15. Our upper limits show that contrary to all the molecular species observed so far, SO is not as abundant in DM Tau as it is in AB Aur. Our results demonstrate that the disk associated with AB Aur is rich in molecular species. Our chemical model shows that the detection of SO is consistent with that expected from a very young disk where the molecular adsorption onto grains does not yet dominate the chemistry.
The purpose of this survey is to describe how locally compact groups can be studied as geometric objects. We will emphasize the main ideas and skip or just sketch most proofs, often referring the reader to our much more detailed book arXiv:1403.3796
We report the first detection of DCO+ in a circumstellar disk. The DCO+ J=5-4 line at 360.169 GHz is observed with the 15m James Clerk Maxwell Telescope in the disk around the pre-main sequence star TW Hya. Together with measurements of the HCO+ and H13CO+ J=4-3 lines, this allows an accurate determination of the DCO+/HCO+ ratio in this disk. The inferred value of 0.035+-0.015 is close to that found in cold pre-stellar cores and is somewhat higher than that measured in the envelope around the low-mass protostar IRAS 16293 -2422. It is also close to the DCN/HCN ratio obtained for pristine cometary material in the jet of comet Hale-Bopp. The observed DCO+/HCO+ ratio for TW Hya is consistent with theoretical models of disks which consider gas-phase fractionation processes within a realistic 2-D temperature distribution and which include the effects of freeze-out onto grains.
WL 17 is a young transition disk in the Ophiuchus L1688 molecular cloud complex. Even though WL 17 is among the brightest disks in L1688 and massive enough to expect dust self-scattering, it was undetected in polarization down to ALMAs instrument sen sitivity limit. Such low polarization fractions could indicate unresolved polarization within the beam or optically thin dust emission. We test the latter case by combining the high sensitivity 233 GHz Stokes I data from the polarization observations with previous ALMA data at 345 GHz and 100 GHz. We use simple geometric shapes to fit the observed disk visibilities in each band. Using our simple models and assumed dust temperature profiles, we estimate the optical depth in all three bands. The optical depth at 233 GHz peaks at $tau_{233} sim 0.3$, which suggests the dust emission may not be optically thick enough for dust self-scattering to be efficient. We also find the higher sensitivity 233 GHz data show substructure in the disk for the first time. The substructure appears as brighter lobes along the major axis, on either side of the star. We attempt to fit the lobes with a simple geometric model, but they are unresolved in the 233 GHz data. We propose that the disk may be flared at 1 mm such that there is a higher column of dust along the major axis than the minor axis when viewed at an inclination. These observations highlight the strength of high sensitivity continuum data from dust polarization observations to study disk structures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا