ترغب بنشر مسار تعليمي؟ اضغط هنا

Detection of Substructures in Young Transition Disk WL 17

69   0   0.0 ( 0 )
 نشر من قبل Hannah Gulick
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

WL 17 is a young transition disk in the Ophiuchus L1688 molecular cloud complex. Even though WL 17 is among the brightest disks in L1688 and massive enough to expect dust self-scattering, it was undetected in polarization down to ALMAs instrument sensitivity limit. Such low polarization fractions could indicate unresolved polarization within the beam or optically thin dust emission. We test the latter case by combining the high sensitivity 233 GHz Stokes I data from the polarization observations with previous ALMA data at 345 GHz and 100 GHz. We use simple geometric shapes to fit the observed disk visibilities in each band. Using our simple models and assumed dust temperature profiles, we estimate the optical depth in all three bands. The optical depth at 233 GHz peaks at $tau_{233} sim 0.3$, which suggests the dust emission may not be optically thick enough for dust self-scattering to be efficient. We also find the higher sensitivity 233 GHz data show substructure in the disk for the first time. The substructure appears as brighter lobes along the major axis, on either side of the star. We attempt to fit the lobes with a simple geometric model, but they are unresolved in the 233 GHz data. We propose that the disk may be flared at 1 mm such that there is a higher column of dust along the major axis than the minor axis when viewed at an inclination. These observations highlight the strength of high sensitivity continuum data from dust polarization observations to study disk structures.



قيم البحث

اقرأ أيضاً

We present Atacama Large Millimeter Array (ALMA) observations of TW Hya at 3.1 mm with $sim50$ milliarcsecond resolution. These new data were combined with archival high angular resolution ALMA observations at 0.87 mm, 1.3 mm, and 2.1 mm. We analyze these multi-wavelength data to infer a disk radial profile of the dust surface density, maximum particle size, and slope of the particle size distribution. Most previously known annular substructures in the disk of TW Hya are resolved at the four wavelengths. Inside the inner 3 au cavity, the 2.1 mm and 3.1 mm images show a compact source of free-free emission, likely associated with an ionized jet. Our multi-wavelength analysis of the dust emission shows that the maximum particle size in the disk of TW Hya is $>1$ mm. The inner 20 au are completely optically thick at all four bands, which results in the data tracing different disk heights at different wavelengths. Coupled with the effects of dust settling, this prevents the derivation of accurate density and grain size estimates in these regions. At $r>20$ au, we find evidence of the accumulation of large dust particle at the position of the bright rings, indicating that these are working as dust traps. The total dust mass in the disk is between 250 and 330 $M_{oplus}$, which represents a gas-to-dust mass ratio between 50 and 70. Our mass measurement is a factor of 4.5-5.9 higher than the mass that one would estimate using the typical assumptions of large demographic surveys. Our results indicate that the ring substructures in TW Hya are ideal locations to trigger the streaming instability and form new generations of planetesimals.
T Cha is a nearby (d = 100 pc) transition disk known to have an optically thin gap separating optically thick inner and outer disk components. Huelamo et al. (2011) recently reported the presence of a low-mass object candidate within the gap of the T Cha disk, giving credence to the suspected planetary origin of this gap. Here we present the Herschel photometry (70, 160, 250, 350, and 500 micron) of T Cha from the Dust, Ice, and Gas in Time (DIGIT) Key Program, which bridges the wavelength range between existing Spitzer and millimeter data and provide important constraints on the outer disk properties of this extraordinary system. We model the entire optical to millimeter wavelength spectral energy distribution (SED) of T Cha (19 data points between 0.36 and 3300 micron without any major gaps in wavelength coverage). T Cha shows a steep spectral slope in the far-IR, which we find clearly favors models with outer disks containing little or no dust beyond 40 AU. The full SED can be modeled equally well with either an outer disk that is very compact (only a few AU wide) or a much larger one that has a very steep surface density profile. That is, T Chas outer disk seems to be either very small or very tenuous. Both scenarios suggest a highly unusual outer disk and have important but different implications for the nature of T Cha. Spatially resolved images are needed to distinguish between the two scenarios.
128 - S. Facchini , M. Benisty , J. Bae 2020
We present high resolution millimeter continuum ALMA observations of the disks around the T Tauri stars LkCa 15 and J1610. These disks host dust-depleted inner regions, possibly carved by massive planets, and are of prime interest to study the imprin ts of planet-disk interactions. While at moderate angular resolution they appear as a broad ring surrounding a cavity, the continuum emission resolves into multiple rings at a resolution of ~60$times$40 mas (~7.5 au for LkCa 15, ~6 au for J1610) and ~$7,mu$Jy beam$^{-1}$ rms at 1.3 mm. In addition to a broad extended component, LkCa 15 and J1610 host 3 and 2 narrow rings, respectively, with two bright rings in LkCa 15 being radially resolved. The rings look marginally optically thick, with peak optical depths of ~0.5 (neglecting scattering), in agreement with high angular resolution observations of full disks. We perform hydrodynamical simulations with an embedded, sub-Jovian-mass planet and show that the observed multi-ringed substructure can be qualitatively explained as the outcome of the planet-disk interaction. We note however that the choice of the disk cooling timescale alone can significantly impact the resulting gas and dust distributions around the planet, leading to different numbers of rings and gaps and different spacings between them. We propose that the massive outer disk regions of transition disks are favorable places for planetesimals and possibly second generation planet formation of objects with a lower mass than the planets carving the inner cavity (typically few $M_{rm Jup}$), and that the annular substructures observed in LkCa 15 and J1610 may be indicative of planetary core formation within dust-rich pressure traps. Current observations are compatible with other mechanisms being at the origin of the observed substructures, in particular with narrow rings generated at the edge of the CO and N$_2$ snowlines.
We present new ALMA 233 GHz continuum observations of the FU Orionis Object HBC722. With these data we detect HBC722 at millimeter wavelengths for the first time, use this detection to calculate a circumstellar disk mass of 0.024 solar masses, and di scuss implications for the burst triggering mechanism.
The extremely young Class 0 object B1b-S and the first hydrostatic core (FSHC) candidate, B1b-N, provide a unique opportunity to study the chemical changes produced in the elusive transition from the prestellar core to the protostellar phase. We pres ent 40x70 images of Barnard 1b in the 13CO 1->0, C18O 1->0, NH2D 1_{1,1}a->1_{0,1}s, and SO 3_2->2_1 lines obtained with the NOEMA interferometer. The observed chemical segregation allows us to unveil the physical structure of this young protostellar system down to scales of ~500au. The two protostellar objects are embedded in an elongated condensation, with a velocity gradient of ~0.2-0.4 m s^{-1} au^{-1} in the east-west direction, reminiscent of an axial collapse. The NH2D data reveal cold and dense pseudo-disks (R~500-1000 au) around each protostar. Moreover, we observe evidence of pseudo-disk rotation around B1b-S. We do not see any signature of the bipolar outflows associated with B1b-N and B1b-S, which were previously detected in H2CO and CH3OH, in any of the imaged species. The non-detection of SO constrains the SO/CH3OH abundance ratio in the high-velocity gas.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا