ﻻ يوجد ملخص باللغة العربية
In this paper, a branching process approximation for the spread of a Reed-Frost epidemic on a network with tunable clustering is derived. The approximation gives rise to expressions for the epidemic threshold and the probability of a large outbreak in the epidemic. It is investigated how these quantities varies with the clustering in the graph and it turns out for instance that, as the clustering increases, the epidemic threshold decreases. The network is modelled by a random intersection graph, in which individuals are independently members of a number of groups and two individuals are linked to each other if and only if they share at least one group.
We study the component structure in random intersection graphs with tunable clustering, and show that the average degree works as a threshold for a phase transition for the size of the largest component. That is, if the expected degree is less than o
The evoSIR model is a modification of the usual SIR process on a graph $G$ in which $S-I$ connections are broken at rate $rho$ and the $S$ connects to a randomly chosen vertex. The evoSI model is the same as evoSIR but recovery is impossible. In an u
We consider a large class of random geometric graphs constructed from samples $mathcal{X}_n = {X_1,X_2,ldots,X_n}$ of independent, identically distributed observations of an underlying probability measure $ u$ on a bounded domain $Dsubset mathbb{R}^d
In this paper, we are concerned with the stochastic susceptible-infectious-susceptible (SIS) epidemic model on the complete graph with $n$ vertices. This model has two parameters, which are the infection rate and the recovery rate. By utilizing the t
Consider a collection of random variables attached to the vertices of a graph. The reconstruction problem requires to estimate one of them given `far away observations. Several theoretical results (and simple algorithms) are available when their join