ﻻ يوجد ملخص باللغة العربية
To make predictions for the existence of ``dark galaxies, it is necessary to understand what determines whether a gas cloud will form stars. Star formation thresholds are generally explained in terms of the Toomre criterion for gravitational instability. I contrast this theory with the thermo-gravitational instability hypothesis of Schaye (2004), in which star formation is triggered by the formation of a cold gas phase and which predicts a nearly constant surface density threshold. I argue that although the Toomre analysis is useful for the global stability of disc galaxies, it relies on assumptions that break down in the outer regions, where star formation thresholds are observed. The thermo-gravitational instability hypothesis can account for a number of observed phenomena, some of which were thought to be unrelated to star formation thresholds.
We aim at understanding the massive star formation (MSF) limit $m(r) = 870 M_{odot} (r/pc)^{1.33}$ in the mass-size space of molecular structures recently proposed by Kauffmann & Pillai (2010). As a first step, we build on the hypothesis of a volume
Most gas in giant molecular clouds is relatively low-density and forms star inefficiently, converting only a small fraction of its mass to stars per dynamical time. However, star formation models generally predict the existence of a threshold density
We study global star formation thresholds in the outer parts of galaxies by investigating the stability of disk galaxies embedded in dark halos. The disks are self-gravitating, contain metals and dust, and are exposed to UV radiation. We find that th
The Kennicutt-Schmidt (KS) relationship between the surface density of the star formation rate (SFR) and the gas surface density has three distinct power laws that may result from one model in which gas collapses at a fixed fraction of the dynamical
Young massive clusters (YMCs) are usually accompanied by lower-mass clusters and unbound stars with a total mass equal to several tens times the mass of the YMC. If this was also true when globular clusters (GCs) formed, then their cosmic density imp