ﻻ يوجد ملخص باللغة العربية
We study the location of massive disk galaxies on the Tully-Fisher relation. Using a combination of K-band photometry and high-quality rotation curves, we show that in traditional formulations of the TF relation (using the width of the global HI profile or the maximum rotation velocity), galaxies with rotation velocities larger than 200 km/s lie systematically to the right of the relation defined by less massive systems, causing a characteristic `kink in the relations. Massive, early-type disk galaxies in particular have a large offset, up to 1.5 magnitudes, from the main relation defined by less massive and later-type spirals. The presence of a change in slope at the high-mass end of the Tully-Fisher relation has important consequences for the use of the Tully-Fisher relation as a tool for estimating distances to galaxies or for probing galaxy evolution. In particular, the luminosity evolution of massive galaxies since z = 1 may have been significantly larger than estimated in several recent studies. We also show that many of the galaxies with the largest offsets have declining rotation curves and that the change in slope largely disappears when we use the asymptotic rotation velocity as kinematic parameter. The remaining deviations from linearity can be removed when we simultaneously use the total baryonic mass (stars + gas) instead of the optical or near-infrared luminosity. Our results strengthen the view that the Tully-Fisher relation fundamentally links the mass of dark matter haloes with the total baryonic mass embedded in them.
We investigate the stellar-mass Tully-Fisher relation (TFR) between the stellar mass and the integrated gas velocity dispersion, quantified by the kinematic estimator S_0.5 measured from strong emission lines in spectra of galaxies at 0<z<5. We combi
We validate the baryonic Tully Fisher (BTF) relation by exploring the Tully Fish er (TF) and BTF properties of optically and HI-selected disk galaxies. The data includes galaxies from: Sakai et al. (2000) calibrator sample; McGaugh et al. (2000: MC20
The use of the Tully-Fisher (TF) relation for the determination of the Hubble Constant relies on the availability of an adequate template TF relation and of reliable primary distances. Here we use a TF template relation with the best available kinema
We present a study of the local B and K-band Tully-Fisher Relation (TFR) between absolute magnitude and maximum circular speed in S0 galaxies. To make this study, we have combined kinematic data, including a new high-quality spectral data set from th
The galaxy circular velocity function at small masses is related to the matter power spectrum on small scales. Although this function is well-studied for Local Group dwarfs, theoretical predictions and observational measurements are difficult for sat