ترغب بنشر مسار تعليمي؟ اضغط هنا

The Tully-Fisher relation for S0 galaxies

68   0   0.0 ( 0 )
 نشر من قبل Alejandro Bedregal
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a study of the local B and K-band Tully-Fisher Relation (TFR) between absolute magnitude and maximum circular speed in S0 galaxies. To make this study, we have combined kinematic data, including a new high-quality spectral data set from the Fornax Cluster, with homogeneous photometry from the RC3 and 2MASS catalogues, to construct the largest sample of S0 galaxies ever used in a study of the TFR. Independent of environment, S0 galaxies are found to lie systematically below the TFR for nearby spirals in both optical and infrared bands. This offset can be crudely interpreted as arising from the luminosity evolution of spiral galaxies that have faded since ceasing star formation. However, we also find a large scatter in the TFR. We show that most of this scatter is intrinsic, not due to the observational uncertainties. The presence of such a large scatter means that the population of S0 galaxies cannot have formed exclusively by the above simple fading mechanism after all transforming at a single epoch. To better understand the complexity of the transformation mechanism, we have searched for correlations between the offset from the TFR and other properties of the galaxies such as their structural properties, central velocity dispersions and ages (as estimated from line indices). For the Fornax Cluster data, the offset from the TFR relates with the estimated age of the stars in the individual galaxies, in the sense and of the magnitude expected if S0 galaxies had passively faded since being converted from spirals. This correlation implies that a significant part of the scatter in the TFR arises from the different times at which galaxies began their transformation.



قيم البحث

اقرأ أيضاً

We measure the Tully-Fisher relations of 14 lenticular galaxies (S0s) and 14 spirals. We use two measures of rotational velocity. One is derived directly from observed spatially-resolved stellar kinematics and the other from the circular velocities o f mass models that include a dark halo and whose parameters are constrained by detailed kinematic modelling. Contrary to the naive expectations of theories of S0 formation, we find no significant difference between the Tully-Fisher relations of the two samples when plotted as functions of both brightness and stellar mass.
178 - T.D. Rawle 2013
We present deep GMOS long-slit spectroscopy of 15 Coma cluster S0 galaxies, and extract kinematic properties along the major axis to several times the disc scale-length. Supplementing our dataset with previously published data, we create a combined s ample of 29 Coma S0s, as well as a comparison sample of 38 Coma spirals. Using photometry from SDSS and 2MASS, we construct the Tully-Fisher relation (TFR; luminosity versus maximum rotational velocity) for S0 galaxies. At fixed rotational velocity, the Coma S0 galaxies are on average fainter than Coma spirals by 1.10$pm$0.18, 0.86$pm$0.19 and 0.83$pm$0.19 mag in the g, i and Ks bands respectively. The typical S0 offsets remain unchanged when calculated relative to large field-galaxy spiral samples. The observed offsets are consistent with a simple star formation model in which S0s are identical to spirals until abrupt quenching occurs at some intermediate redshift. The offsets form a continuous distribution tracing the time since the cessation of star formation, and exhibit a strong correlation (>6{sigma}) with residuals from the optical colour-magnitude relation. Typically, S0s which are fainter than average for their rotational velocity are also redder than average for their luminosity. The S0 TFR offset is also correlated with both the projected cluster-centric radius and the {Sigma} (projected) local density parameter. Since current local environment is correlated with time of accretion into the cluster, our results support a scenario in which transformation of spirals to S0s is triggered by cluster infall.
393 - Trinidad Tapia 2017
(Abridged version) We explore whether a scenario that combines an origin by mergers at $zsim$1.8-1.5 with a subsequent passive evolution of the resulting S0 remnants since $z sim$0.8-1 is compatible with observational data of S0s in the Tully-Fisher relation (TFR). We studied a set of major and minor merger experiments from the GalMer database that generate massive S0 remnants. We analysed the location of these remnants in the photometric and stellar TFRs assuming that they correspond to $zsim0.8$ galaxies. We then estimated their evolution in these planes over the last 7 Gyr. The results were compared with data of real S0s and spirals at different redshifts. We also tested how the use of Vcirc or Vrot,max affects the results. We found that just after $sim$1-2 Gyr of coalescence, major mergers generate S0 remnants that are outliers of the local photometric and stellar TFRs at $zsim0.8$. After $sim$4-7 Gyr of passive evolution in isolation, the S0 remnants move towards the local TFR, although the initial scatter among them persists. This scatter is sensitive to the indicator used for the rotation velocity: Vcirc values yield a lower scatter than when Vrot,max values are considered instead. In the planes involving Vrot,max, a clear segregation of the S0 remnants in terms of the spin-orbit coupling of the model is observed, in which the remnants of retrograde encounters overlap with local S0s hosting counter-rotating discs. The location of the S0 remnants at $zsim 0$ agrees well with the observed distribution of local S0 galaxies in the $sigma_0$-$M_K$, Vcirc-$sigma_0$ and Vrot,max-$sigma_0$ planes. Thus, massive S0 galaxies may have been formed through major mergers that occurred at high redshift and have later evolved towards the local TFR through passive evolution in relative isolation, a mechanism that would also contribute to the scatter observed in this relation.
We examine the evolution of the Tully-Fisher relation (TFR) using a sample of 89 field spirals, with 0.1 < z < 1, for which we have measured confident rotation velocities (Vrot). By plotting the residuals from the local TFR versus redshift, or altern atively fitting the TFR to our data in several redshift bins, we find evidence that luminous spiral galaxies are increasingly offset from the local TFR with redshift, reaching a brightening of -1.0+-0.5 mag, for a given Vrot, by approximately z = 1. Since selection effects would generally increase the fraction of intrinsically-bright galaxies at higher redshifts, we argue that the observed evolution is probably an upper limit. Previous studies have used an observed correlation between the TFR residuals and Vrot to argue that low mass galaxies have evolved significantly more than those with higher mass. However, we demonstrate that such a correlation may exist purely due to an intrinsic coupling between the Vrot scatter and TFR residuals, acting in combination with the TFR scatter and restrictions on the magnitude range of the data, and therefore it does not necessarily indicate a physical difference in the evolution of galaxies with different Vrot. Finally, if we interpret the luminosity evolution derived from the TFR as due to the evolution of the star formation rate (SFR) in these luminous spiral galaxies, we find that SFR(z) is proportional to (1+z)^(1.7+-1.1), slower than commonly derived for the overall field galaxy population. This suggests that the rapid evolution in the SFR density of the universe observed since approximately z = 1 is not driven by the evolution of the SFR in individual bright spiral galaxies. (Abridged.)
145 - S. P. Bamford 2005
We have measured maximum rotation velocities (Vrot) for a sample of 111 emission-line galaxies with 0.1 < z < 1, observed in the fields of 6 clusters. From these data we construct matched samples of 58 field and 22 cluster galaxies, covering simila r ranges in redshift (0.25 < z < 1.0) and luminosity (M_B < -19.5 mag), and selected in a homogeneous manner. We find the distributions of M_B, Vrot, and scalelength, to be very similar for the two samples. However, using the Tully-Fisher relation (TFR) we find that cluster galaxies are systematically offset with respect to the field sample by -0.7+-0.2 mag. This offset is significant at 3 sigma and persists when we account for an evolution of the field TFR with redshift. Extensive tests are performed to investigate potential differences between the measured emission lines and derived rotation curves of the cluster and field samples. However, no such differences which could affect the derived Vrot values and account for the offset are found. The most likely explanation for the TFR offset is that giant spiral galaxies in distant clusters are on average brighter, for a given rotation velocity, than those in the field. We discuss the potential mechanisms responsible for this, and consider alternative explanations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا