ترغب بنشر مسار تعليمي؟ اضغط هنا

On the orientation of the Sagittarius A* system

35   0   0.0 ( 0 )
 نشر من قبل Leonhard Meyer
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The near-infrared emission from the black hole at the Galactic center (Sgr A*) has unique properties. The most striking feature is a suggestive periodic sub-structure that has been observed in a couple of flares so far. Using near-infrared polarimetric observations and modelling the quasi-periodicity in terms of an orbiting blob, we try to constrain the three dimensional orientation of the Sgr A* system. We report on so far unpublished polarimetric data from 2003. They support the observations of a roughly constant mean polarization angle of 60 degr pm 20 degr from 2004-2006. Prior investigations of the 2006 data are deepened. In particular, the blob model fits are evaluated such that constraints on the position angle of Sgr A* can be derived. Confidence contours in the position-inclination angle plane are derived. On a 3sigma level the position angle of the equatorial plane normal is in the range 60 degr - 108 degr (east of north) in combination with a large inclination angle. This agrees well with recent independent work in which radio spectral/morphological properties of Sgr A* and X-ray observations, respectively, have been used. However, the quality of the presently available data and the uncertainties in our model bring some ambiguity to our conclusions.

قيم البحث

اقرأ أيضاً

223 - Amit Kashi , Noam Soker 2008
We examine a variety of observations that shed light on the orientation of the semi-major axis of the Eta Carinae massive binary system. Under several assumptions we study the following observations: The Doppler shifts of some He I P-Cygni lines that is attributed to the secondarys wind, of one Fe II line that is attributed to the primarys wind, and of the Paschen emission lines which are attributed to the shocked primarys wind, are computed in our model and compared with observations. We compute the hydrogen column density toward the binary system in our model, and find a good agreement with that deduced from X-ray observations. We calculate the ionization of surrounding gas blobs by the radiation of the hotter secondary star, and compare with observations of a highly excited [Ar III] narrow line. We find that all of these support an orientation where for most of the time the secondary - the hotter less massive star - is behind the primary star. The secondary comes closer to the observer only for a short time near periastron passage, in its highly eccentric (e~0.9) orbit. Further supporting arguments are also listed, followed by discussion of some open and complicated issues.
Very Long Baseline Interferometry (VLBI) at sub-millimeter waves has the potential to image the shadow of the black hole in the Galactic Center, Sagittarius A* (Sgr A*), and thereby test basic predictions of the theory of general relativity. We inves tigate the imaging prospects of a new Space VLBI mission concept. The setup consists of two satellites in polar or equatorial circular Medium-Earth Orbits with slightly different radii, resulting in a dense spiral-shaped uv-coverage with long baselines, allowing for extremely high-resolution and high-fidelity imaging of radio sources. We simulate observations of a general relativistic magnetohydrodynamics model of Sgr A* for this configuration with noise calculated from model system parameters. After gridding the $uv$-plane and averaging visibilities accumulated over multiple months of integration, images of Sgr A* with a resolution of up to 4 $mu$as could be reconstructed, allowing for stronger tests of general relativity and accretion models than with ground-based VLBI.
Black hole event horizons, causally separating the external universe from compact regions of spacetime, are one of the most exotic predictions of General Relativity (GR). Until recently, their compact size has prevented efforts to study them directly . Here we show that recent millimeter and infrared observations of Sagittarius A* (Sgr A*), the supermassive black hole at the center of the Milky Way, all but requires the existence of a horizon. Specifically, we show that these observations limit the luminosity of any putative visible compact emitting region to below 0.4% of Sgr A*s accretion luminosity. Equivalently, this requires the efficiency of converting the gravitational binding energy liberated during accretion into radiation and kinetic outflows to be greater than 99.6%, considerably larger than those implicated in Sgr A*, and therefore inconsistent with the existence of such a visible region. Finally, since we are able to frame this argument entirely in terms of observable quantities, our results apply to all geometric theories of gravity that admit stationary solutions, including the commonly discussed f(R) class of theories.
58 - A. Eckart , M. Zajacek , M. Parsa 2018
The Galactic Center is the closest galactic nucleus that allows us to determine the multi-frequency behavior of the supermassive black hole counterpart Sagittarius A* in great detail. We put SgrA*, as a nucleus with weak activity, into the context of nearby low luminosity nuclei. Possible hints for galaxy evolution of these sources across the [NII]-based diagnostic diagram can be inferred from dependencies on the masses, excitation ratios, and radio luminosities within this diagram. For SgrA* we also discuss responsible radiation mechanisms covering results from the radio, infrared, and X-ray regime. We also address the question of justifying the hot-spot model for describing flare profiles in light curves. Since the brightness of LLAGN is also linked to star formation we briefly discuss the possibility of having stars formed in the immediate vicinity of supermassive black holes and possibly even in a mildly relativistic environment.
We present deep V,I CCD photometry of the globular cluster Terzan 8, recently found to be a member of the globular cluster system of the Sagittarius dwarf spheroidal galaxy. We accurately estimate the metallicity of Ter 8 and provide the first direct determination of the color excess toward this cluster. Our robust age estimate confirms that this cluster is indeed coeval with typical galactic globulars of comparable metal content, and thus it is probably significantly older than at least two other Sagittarius clusters, Terzan 7 and Arp 2. The implications of this result on the star formation history of the Sagittarius galaxy are briefly discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا