ﻻ يوجد ملخص باللغة العربية
We consider the family $mathrm{MP}_d$ of affine conjugacy classes of polynomial maps of one complex variable with degree $d geq 2$, and study the map $Phi_d:mathrm{MP}_dto widetilde{Lambda}_d subset mathbb{C}^d / mathfrak{S}_d$ which maps each $f in mathrm{MP}_d$ to the set of fixed-point multipliers of $f$. We show that the local fiber structure of the map $Phi_d$ around $bar{lambda} in widetilde{Lambda}_d$ is completely determined by certain two sets $mathcal{I}(lambda)$ and $mathcal{K}(lambda)$ which are subsets of the power set of ${1,2,ldots,d }$. Moreover for any $bar{lambda} in widetilde{Lambda}_d$, we give an algorithm for counting the number of elements of each fiber $Phi_d^{-1}left(bar{lambda}right)$ only by using $mathcal{I}(lambda)$ and $mathcal{K}(lambda)$. It can be carried out in finitely many steps, and often by hand.
We give a characterizaton of smooth ample Hypersurfaces in Abelian Varieties and also describe an irreducible connected component of their moduli space: it consists of the Hypersurfaces of a given polarization type, plus the iterated univariate cover
A portrait is a combinatorial model for a discrete dynamical system on a finite set. We study the geometry of portrait moduli spaces, whose points correspond to equivalence classes of point configurations on the affine line for which there exist poly
We define a class of surfaces corresponding to the ADE root lattices and construct compactifications of their moduli spaces as quotients of projective varieties for Coxeter fans, generalizing Losev-Manin spaces of curves. We exhibit modular families
Let M be the moduli scheme of canonically polarized manifolds with Hilbert polynomial h. We construct for a given finite set I of natural numbers m>1 with h(m)>0 a projective compactification M of the reduced scheme underlying M such that the ample i
Kodaira fibred surfaces are a remarkable example of projective classifying spaces, and there are still many intriguing open questions concerning them, especially the slope question. The topological characterization of Kodaira fibrations is emblematic