ﻻ يوجد ملخص باللغة العربية
Kodaira fibred surfaces are a remarkable example of projective classifying spaces, and there are still many intriguing open questions concerning them, especially the slope question. The topological characterization of Kodaira fibrations is emblematic of the use of topological methods in the study of moduli spaces of surfaces and higher dimensional complex algebraic varieties, and their compactifications. The paper contains some new results but is mostly a survey paper, dealing with fibrations, questions on monodromy and factorizations in the mapping class group, old and new results on Variation of Hodge Structures, especially a recent answer given (in joint work with Dettweiler) to a long standing question posed by Fujita. In the landscape of our tour, Galois coverings, deformations and rigid manifolds (new results obtained with Ingrid Bauer) projective classifying spaces, the action of the absolute Galois group on moduli spaces, stand also in the forefront. These questions lead to interesting algebraic surfaces, for instance the BCDH surfaces, hypersurfaces in Bagnera-de Franchis varieties, Inoue-type surfaces.
One of the main themes of this long article is the study of projective varieties which are K(H,1)s, i.e. classifying spaces BH for some discrete group H. After recalling the basic properties of such classifying spaces, an important class of such vari
We show that the M-canonical map of an n-dimensional complex projective manifold X of Kodaira dimension two is birational to an Iitaka fibration for a computable positive integer M. M depends on the index b of a general fibre F of the Iitaka fibratio
For each $n geq 3$ the authors provide an $n$-dimensional rigid compact complex manifold of Kodaira dimension $1$. First they construct a series of singular quotients of products of $(n-1)$ Fermat curves with the Klein quartic, which are rigid. Then
In this paper the authors study quotients of the product of elliptic curves by a rigid diagonal action of a finite group $G$. It is shown that only for $G = operatorname{He(3)}, mathbb Z_3^2$, and only for dimension $geq 4$ such an action can be free
We give a universal approach to the deformation-obstruction theory of objects of the derived category of coherent sheaves over a smooth projective family. We recover and generalise the obstruction class of Lowen and Lieblich, and prove that it is a p