ﻻ يوجد ملخص باللغة العربية
Since the experimental realization of graphene1, extensive theoretical work has focused on short-range disorder2-5, ripples6, 7, or charged impurities2, 3, 8-13 to explain the conductivity as a function of carrier density sigma_(n)[1,14-18], and its minimum value sigma_min near twice the conductance quantum 4e2/h[14, 15, 19, 20]. Here we vary the density of charged impurities nimp on clean graphene21 by deposition of potassium in ultra high vacuum. At non-zero carrier density, charged impurity scattering produces the ubiquitously observed1, 14-18 linear sigma_(n) with the theoretically-predicted magnitude. The predicted asymmetry11 for attractive vs. repulsive scattering of Dirac fermions is observed. Sigma_min occurs not at the carrier density which neutralizes nimp, but rather the carrier density at which the average impurity potential is zero10. Sigma_min decreases initially with nimp, reaching a minimum near 4e2/h at non-zero nimp, indicating that Sigma_min in present experimental samples does not probe Dirac-point physics14, 15, 19, 20 but rather carrier density inhomogeneity due to the impurity potential3, 9, 10.
We have examined the impact of charged impurity scattering on charge carrier transport in bilayer graphene (BLG) by deposition of potassium in ultra-high vacuum at low temperature. Charged impurity scattering gives a conductivity which is supra-linea
We review the physics of charged impurities in the vicinity of graphene. The long-range nature of Coulomb impurities affects both the nature of the ground state density profile as well as graphenes transport properties. We discuss the screening of a
We theoretically calculate the impurity-scattering induced resistivity of twisted bilayer graphene at low twist angles where the graphene Fermi velocity is strongly suppressed. We consider, as a function of carrier density, twist angle, and temperatu
The transport properties of carriers in semiconducting graphene nanoribbons are studied by comparing the effects of phonon, impurity, and line-edge roughness scattering. It is found that scattering from impurities located at the surface of nanoribbon
The conductivity of armchair graphene nanoribbons in the presence of short-range impurities and edge roughness is studied theoretically using the Boltzmann transport equation for quasi-one-dimensional systems. As the number of occupied subbands incre