ﻻ يوجد ملخص باللغة العربية
Far-UV spectroscopy from the FUSE satellite is analysed to uniquely probe spatial structure and clumping in the fast wind of the central star of the H-rich planetary nebula NGC6543 (HD164963). Time-series data of the unsaturated PV 1118, 1128 resonance line P Cygni profiles provide a very sensitive diagnostic of variable wind conditions in the outflow. We report on the discovery of episodic and recurrent optical depth enhancements in the PV absorption troughs, with some evidence for a 0.17-day modulation time-scale. SEI line-synthesis modelling is used to derive physical properties, including the optical depth evolution of individual `events. The characteristics of these features are essentially identical to the `discrete absorption components (DACs) commonly seen in the UV lines of massive OB stars. We have also employed the unified model atmosphere code CMFGEN to explore spectroscopic signatures of clumping, and report in particular on the clear sensitivity of the PV lines to the clump volume filling factor. The results presented here have implications for the downward revision of mass-loss rates in PN central stars. We conclude that the temporal structures seen in the PV lines of NGC6543 likely have a physical origin that is similar to that operating in massive, luminous stars, and may be related to near-surface perturbations caused by stellar pulsation and/or magnetic fields.
We present HST/STIS time-series spectroscopy of the central star of the Cats Eye planetary nebula NGC 6543. Intensive monitoring of the UV lines over a 5.8 hour period reveals well defined details of large-scale structure in the fast wind, which are
The influence of the wind to the total continuum of OB supergiants is discussed. For wind velocity distributions with beta > 1.0, the wind can have strong influence to the total continuum emission, even at optical wavelengths. Comparing the continuum
We study the influence of clumping on the predicted wind structure of O-type stars. For this purpose we artificially include clumping into our stationary wind models. When the clumps are assumed to be optically thin, the radiative line force increase
We investigate the structure of the wind in the neutron star X-ray binary system Vela X-1 by analyzing its flaring behavior. Vela X-1 shows constant flaring, with some flares reaching fluxes of more than 3.0 Crab between 20-60 keV for several 100 sec
We probe the radial clumping stratification of OB stars in the intermediate and outer wind regions (r>~2 R*) to derive upper limits for mass-loss rates, and compare to current mass-loss implementation. Together with archival multi-wavelength data, ou