ترغب بنشر مسار تعليمي؟ اضغط هنا

X-ray variation statistics and wind clumping in Vela X-1

222   0   0.0 ( 0 )
 نشر من قبل Felix F\\\"urst
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the structure of the wind in the neutron star X-ray binary system Vela X-1 by analyzing its flaring behavior. Vela X-1 shows constant flaring, with some flares reaching fluxes of more than 3.0 Crab between 20-60 keV for several 100 seconds, while the average flux is around 250 mCrab. We analyzed all archival INTEGRAL data, calculating the brightness distribution in the 20-60 keV band, which, as we show, closely follows a log-normal distribution. Orbital resolved analysis shows that the structure is strongly variable, explainable by shocks and a fluctuating accretion wake. Analysis of RXTE ASM data suggests a strong orbital change of N_H. Accreted clump masses derived from the INTEGRAL data are on the order of 5 x 10^19 -10^21 g. We show that the lightcurve can be described with a model of multiplicative random numbers. In the course of the simulation we calculate the power spectral density of the system in the 20-100 keV energy band and show that it follows a red-noise power law. We suggest that a mixture of a clumpy wind, shocks, and turbulence can explain the measured mass distribution. As the recently discovered class of supergiant fast X-ray transients (SFXT) seems to show the same parameters for the wind, the link between persistent HMXB like Vela X-1 and SFXT is further strengthened.



قيم البحث

اقرأ أيضاً

We present a $sim$130 ks observation of the prototypical wind-accreting, high-mass X-ray binary Vela X-1 collected with XMM-Newton at orbital phases between 0.12 and 0.28. A strong flare took place during the observation that allows us to investigate the reaction of the clumpy stellar wind to the increased X-ray irradiation. To examine the winds reaction to the flare, we performed both time-averaged and time-resolved analyses of the RGS spectrum and examined potential spectral changes. We focused on the high-resolution XMM-Newton RGS spectra and divided the observation into pre-flare, flare, and post-flare phases. We modeled the time-averaged and time-resolved spectra with phenomenological components and with the self-consistent photoionization models calculated via CLOUDY and XSTAR in the pre-flare phase, where strong emission lines due to resonant transitions of highly ionized ions are seen. In the spectra, we find emission lines corresponding to K-shell transitions in highly charged ions of oxygen, neon, magnesium, and silicon as well as radiative recombination continua (RRC) of oxygen. Additionally, we observe potential absorption lines of magnesium at a lower ionization stage and features identified as iron L lines. The CLOUDY and XSTAR photoionization models provide contradictory results, either pointing towards uncertainties in theory or possibly a more complex multi-phase plasma, or both. We are able to demonstrate the existence of a plethora of variable narrow features, including the firm detection of oxygen lines and RRC that RGS enables to observe in this source for the first time. We show that Vela X-1 is an ideal source for future high-resolution missions, such as XRISM and Athena.
82 - Shin Watanabe 2006
We present results from quantitative modeling and spectral analysis of the high mass X-ray binary Vela X-1 obtained with the Chandra HETGS. The spectra exhibit emission lines from H-like and He-like ions driven by photoionization, as well as fluoresc ent emission lines from several elements in lower charge states. In order to interpret and make full use of the high-quality data, we have developed a simulator, which calculates the ionization and thermal structure of a stellar wind photoionized by an X-ray source, and performs Monte Carlo simulations of X-ray photons propagating through the wind. The emergent spectra are then computed as a function of the viewing angle accurately accounting for photon transport in three dimensions including dynamics. From comparisons of the observed spectra with the simulation results, we are able to find the ionization structure and the geometrical distribution of material in Vela X-1 that can reproduce the observed spectral line intensities and continuum shapes at different orbital phases remarkably well. It is found that a large fraction of X-ray emission lines from highly ionized ions are formed in the region between the neutron star and the companion star. We also find that the fluorescent X-ray lines must be produced in at least three distinct regions --(1)the extended stellar wind, (2)reflection off the stellar photosphere, and (3)in a distribution of dense material partially covering and possibly trailing the neutron star, which may be associated with an accretion wake. Finally, from detailed analysis of the emission lines, we demonstrate that the stellar wind is affected by X-ray photoionization.
Bright and eclipsing, the high-mass X-ray binary Vela X-1 offers a unique opportunity to study accretion onto a neutron star from clumpy winds of O/B stars and to disentangle the complex accretion geometry of these systems. In Chandra-HETGS spectrosc opy at orbital phase ~0.25, when our line of sight towards the source does not pass through the large-scale accretion structure such as the accretion wake, we observe changes in overall spectral shape on timescales of a few kiloseconds. This spectral variability is, at least in part, caused by changes in overall absorption and we show that such strongly variable absorption cannot be caused by unperturbed clumpy winds of O/B stars. We detect line features from high and low ionization species of silicon, magnesium and neon whose strengths and presence depend on the overall level of absorption. They imply a co-existence of cool and hot gas phases in the system that we interpret as a highly variable, structured accretion flow close to the compact object such as has been recently seen in simulations of wind accretion in high-mass X-ray binaries.
66 - Masao Sako 1999
We present a quantitative analysis of the X-ray spectrum of the eclipsing high mass X-ray binary Vela X-1 (4U 0900-40) using archival data from ASCA. The observation covers a time interval centered on eclipse of the X-ray pulsar by the companion. The spectrum exhibits two distinct sets of discrete features: (1) recombination lines and radiative recombination continua from mostly H- and He-like species produced by photoionization in an extended stellar wind; and (2) fluorescent K-shell lines associated with near-neutral species also present in the circumsource medium. Using a detailed spectral model that explicitly accounts for the recombination cascade kinetics for each of the constituent charge states, we are able to obtain a statistically acceptable (chi_r^2=0.88) fit to the observed spectrum and to derive emission measures associated with the individual K-shell ions of several elements. We find a best-fit mass loss rate of ~2.7 x 10^-7 M-solar/yr, which is approximately a factor of 10 lower than previous estimates of the mass loss rate for the Vela X-1 companion star, which have primarily been determined from P Cygni profiles, and X-ray absorption measurements. We argue that this discrepancy can be reconciled if the X-ray irradiated portion of the wind in Vela X-1 is structurally inhomogeneous, consisting of hundreds of cool, dense clumps embedded in a hotter, more ionized gas. Most of the mass is contained in the clumps, while most of the wind volume (>95%) is occupied by the highly ionized component. We show quantitatively, that this interpretation is also consistent with the presence of the X-ray fluorescent lines in the ASCA spectrum, which are produced in the cooler, clumped component.
In classical supergiant X-ray binaries (SgXBs), the Bondi-Hoyle-Lyttleton wind accretion was usually assumed, and the angular momentum transport to the accretors is inefficient. The observed spin-up/spin-down behavior of the neutron star in SgXBs is not well understood. In this paper, we report an extended low state of Vela X-1 (at orbital phases 0.16-0.2), lasting for at least 30 ks, observed with Chandra during the onset of an unusual spin-up period. During this low state, the continuum fluxes dropped by a factor of 10 compared to the preceding flare period, and the continuum pulsation almost disappeared. Meanwhile, the Fe K$alpha$ fluxes of the low state were similar to the preceding flare period, leading to an Fe K$alpha$ equivalent width (EW) of 0.6 keV, as high as the Fe K$alpha$ EW during the eclipse phase of Vela X-1. Both the pulsation cessation and the high Fe K$alpha$ EW indicate an axisymmetric structure with a column density larger than $10^{24}rm cm^{-2}$ on a spatial scale of the accretion radius of Vela X-1. These phenomena are consistent with the existence of an accretion disk that leads to the following spin-up of Vela X-1. It indicates that disk accretion, although not always, does occur in classical wind-fed SgXBs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا