ترغب بنشر مسار تعليمي؟ اضغط هنا

Zero

50   0   0.0 ( 0 )
 نشر من قبل Gunn Quznetsov A.
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف G. Quznetsov




اسأل ChatGPT حول البحث

You shall not find any new physics, because all physical events are interpreted well-known particles (leptons, quarks, photons, gluons, W-bosons, Z-boson) and forces which have long known (electroweak, gravity, strong interactions). Contents: 1. Pointlike events and probability. 2. Leptons moving equations and masses. 3. Fermion-antifermion asommetry. 4. Electroweak equations. 5. Chromatic states and gluons. 6. Asimptotic freedom, confinement, Newtons gravity. 7. Dark energy and dark matter. 8. Events and particles. 9. Conclusion.

قيم البحث

اقرأ أيضاً

129 - Kevin Cahill 2019
A quantum field theory has finite zero-point energy if the sum over all boson modes $b$ of the $n$th power of the boson mass $ m_b^n $ equals the sum over all fermion modes $f$ of the $n$th power of the fermion mass $ m_f^n $ for $n= 0$, 2, and 4. Th e zero-point energy of a theory that satisfies these three conditions with otherwise random masses is huge compared to the density of dark energy. But if in addition to satisfying these conditions, the sum of $m_b^4 log m_b/mu$ over all boson modes $b$ equals the sum of $ m_f^4 log m_f/mu $ over all fermion modes $f$, then the zero-point energy of the theory is zero. The value of the mass parameter $mu$ is irrelevant in view of the third condition ($n=4$). The particles of the standard model do not remotely obey any of these four conditions. But an inclusive theory that describes the particles of the standard model, the particles of dark matter, and all particles that have not yet been detected might satisfy all four conditions if pseudomasses are associated with the mean values in the vacuum of the divergences of the interactions of the inclusive model. Dark energy then would be the finite potential energy of the inclusive theory.
Recent experimental reports of super-luminal velocity neutrinos moving between Geneva and Gran Sasso in no way contradict the special relativity considerations of conventional quantum field theory. A neutrino exchanged between Geneva and Gran Sasso i s both virtual and space-like. The Lorentz invariant space-like distance $L$ and the Lorentz invariant space-like four momentum transfered $varpi $ between Geneva and Gran Sasso can be extracted from experimental data as will be shown in this work.
105 - A. Widom , J. Swain , 2015
It is argued that the zero point energy in quantum field theory is a reflection of the particle anti-particle content of the theory. This essential physical content is somewhat disguised in electromagnetic theory wherein the photon is its own anti-pa rticle. To illustrate this point, we consider the case of a charged Boson theory $(pi^+,pi^-)$ wherein the particle and anti-particle can be distinguished by the charge $pm e$. Starting from the zero point energy, we derive the Boson pair production rate per unit time per unit volume from the vacuum in a uniform external electric field. The result is further generalized for arbitrary spin $s$.
The present study deals with a flat FRW cosmological model filled with perfect fluid coupled with the zero-mass scalar field in the higher derivative theory of gravity. We have obtained two types of universe models, the first one is the accelerating universe (power-law cosmology) and the second one is the transit phase model (hyperbolic expansion-law). We have obtained various physical and kinematic parameters and discussed them with observationally constrained values of $H_{0}$. The transit redshift value is obtained $z_{t}=0.414$ where the transit model shows signature-flipping and is consistent with recent observations. In our models, the present values of EoS parameter $omega_{0}$ crosses the cosmological constant value $omega_{0}=-1$. Also, the present age of the universe is calculated.
103 - P. R. Silva 2010
A modified vacuum energy density of the radiation field is evaluated, which leads to accepted prediction for the radius of the universe. The modification takes into account the existence of a new gauge boson which also can be used in order to determi ne the mass of the boson responsible for the weak decay of the muon.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا