ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectral methods for the detection of network community structure: a comparative analysis

391   0   0.0 ( 0 )
 نشر من قبل Huawei Shen
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spectral analysis has been successfully applied at the detection of community structure of networks, respectively being based on the adjacency matrix, the standard Laplacian matrix, the normalized Laplacian matrix, the modularity matrix, the correlation matrix and several other variants of these matrices. However, the comparison between these spectral methods is less reported. More importantly, it is still unclear which matrix is more appropriate for the detection of community structure. This paper answers the question through evaluating the effectiveness of these five matrices against the benchmark networks with heterogeneous distributions of node degree and community size. Test results demonstrate that the normalized Laplacian matrix and the correlation matrix significantly outperform the other three matrices at identifying the community structure of networks. This indicates that it is crucial to take into account the heterogeneous distribution of node degree when using spectral analysis for the detection of community structure. In addition, to our surprise, the modularity matrix exhibits very similar performance to the adjacency matrix, which indicates that the modularity matrix does not gain desired benefits from using the configuration model as reference network with the consideration of the node degree heterogeneity.



قيم البحث

اقرأ أيضاً

Social structures emerge as a result of individuals managing a variety of different of social relationships. Societies can be represented as highly structured dynamic multiplex networks. Here we study the dynamical origins of the specific community s tructures of a large-scale social multiplex network of a human society that interacts in a virtual world of a massive multiplayer online game. There we find substantial differences in the community structures of different social actions, represented by the various network layers in the multiplex. Community size distributions are either similar to a power-law or appear to be centered around a size of 50 individuals. To understand these observations we propose a voter model that is built around the principle of triadic closure. It explicitly models the co-evolution of node- and link-dynamics across different layers of the multiplex. Depending on link- and node fluctuation rates, the model exhibits an anomalous shattered fragmentation transition, where one layer fragments from one large component into many small components. The observed community size distributions are in good agreement with the predicted fragmentation in the model. We show that the empirical pairwise similarities of network layers, in terms of link overlap and degree correlations, practically coincide with the model. This suggests that several detailed features of the fragmentation in societies can be traced back to the triadic closure processes.
Community structure is one of the most relevant features encountered in numerous real-world applications of networked systems. Despite the tremendous effort of scientists working on this subject over the past few decades to characterize, model, and a nalyze communities, more investigations are needed to better understand the impact of community structure and its dynamics on networked systems. Here, we first focus on generative models of communities in complex networks and their role in developing strong foundation for community detection algorithms. We discuss modularity and the use of modularity maximization as the basis for community detection. Then, we overview the Stochastic Block Model, its different variants, and inference of community structures from such models. Next, we focus on time evolving networks, where existing nodes and links can disappear and/or new nodes and links may be introduced. The extraction of communities under such circumstances poses an interesting and non-trivial problem that has gained considerable interest over the last decade. We briefly discuss considerable advances made in this field recently. Finally, we focus on immunization strategies essential for targeting the influential spreaders of epidemics in modular networks. Their main goal is to select and immunize a small proportion of individuals from the whole network to control the diffusion process. Various strategies have emerged over the years suggesting different ways to immunize nodes in networks with overlapping and non-overlapping community structure. We first discuss stochastic strategies that require little or no information about the network topology at the expense of their performance. Then, we introduce deterministic strategies that have proven to be very efficient in controlling the epidemic outbreaks, but require complete knowledge of the network.
132 - Heetae Kim , Sang Hoon Lee 2019
Community identification of network components enables us to understand the mesoscale clustering structure of networks. A number of algorithms have been developed to determine the most likely community structures in networks. Such a probabilistic or stochastic nature of this problem can naturally involve the ambiguity in resultant community structures. More specifically, stochastic algorithms can result in different community structures for each realization in principle. In this study, instead of trying to solve this community degeneracy problem, we turn the tables by taking the degeneracy as a chance to quantify how strong companionship each node has with other nodes. For that purpose, we define the concept of companionship inconsistency that indicates how inconsistently a node is identified as a member of a community regarding the other nodes. Analyzing model and real networks, we show that companionship inconsistency discloses unique characteristics of nodes, thus we suggest it as a new type of node centrality. In social networks, for example, companionship inconsistency can classify outsider nodes without firm community membership and promiscuous nodes with multiple connections to several communities. In infrastructure networks such as power grids, it can diagnose how the connection structure is evenly balanced in terms of power transmission. Companionship inconsistency, therefore, abstracts individual nodes intrinsic property on its relationship to a higher-order organization of the network.
Networks in nature possess a remarkable amount of structure. Via a series of data-driven discoveries, the cutting edge of network science has recently progressed from positing that the random graphs of mathematical graph theory might accurately descr ibe real networks to the current viewpoint that networks in nature are highly complex and structured entities. The identification of high order structures in networks unveils insights into their functional organization. Recently, Clauset, Moore, and Newman, introduced a new algorithm that identifies such heterogeneities in complex networks by utilizing the hierarchy that necessarily organizes the many levels of structure. Here, we anchor their algorithm in a general community detection framework and discuss the future of community detection.
146 - A. Yazdani , P. Jeffrey 2011
This paper explores a variety of strategies for understanding the formation, structure, efficiency and vulnerability of water distribution networks. Water supply systems are studied as spatially organized networks for which the practical applications of abstract evaluation methods are critically evaluated. Empirical data from benchmark networks are used to study the interplay between network structure and operational efficiency, reliability and robustness. Structural measurements are undertaken to quantify properties such as redundancy and optimal-connectivity, herein proposed as constraints in network design optimization problems. The role of the supply-demand structure towards system efficiency is studied and an assessment of the vulnerability to failures based on the disconnection of nodes from the source(s) is undertaken. The absence of conventional degree-based hubs (observed through uncorrelated non-heterogeneous sparse topologies) prompts an alternative approach to studying structural vulnerability based on the identification of network cut-sets and optimal connectivity invariants. A discussion on the scope, limitations and possible future directions of this research is provided.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا