ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin dynamics in InAs-nanowire quantum-dots coupled to a transmission line

330   0   0.0 ( 0 )
 نشر من قبل Mircea Trif
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study theoretically electron spins in nanowire quantum dots placed inside a transmission line resonator. Because of the spin-orbit interaction, the spins couple to the electric component of the resonator electromagnetic field and enable coherent manipulation, storage, and read-out of quantum information in an all-electrical fashion. Coupling between distant quantum-dot spins, in one and the same or different nanowires, can be efficiently performed via the resonator mode either in real time or through virtual processes. For the latter case we derive an effective spin-entangling interaction and suggest means to turn it on and off. We consider both transverse and longitudinal types of nanowire quantum-dots and compare their manipulation timescales against the spin relaxation times. For this, we evaluate the rates for spin relaxation induced by the nanowire vibrations (phonons) and show that, as a result of phonon confinement in the nanowire, this rate is a strongly varying function of the spin operation frequency and thus can be drastically reduced compared to lateral quantum dots in GaAs. Our scheme is a step forward to the formation of hybrid structures where qubits of different nature can be integrated in a single device.



قيم البحث

اقرأ أيضاً

We report measurements of the nonlinear conductance of InAs nanowire quantum dots coupled to superconducting leads. We observe a clear alternation between odd and even occupation of the dot, with sub-gap-peaks at $|V_{sd}|=Delta/e$ markedly stronger( weaker) than the quasiparticle tunneling peaks at $|V_{sd}|=2Delta/e$ for odd(even) occupation. We attribute the enhanced $Delta$-peak to an interplay between Kondo-correlations and Andreev tunneling in dots with an odd number of spins, and substantiate this interpretation by a poor mans scaling analysis.
We report growth and characterization of a coupled quantum dot structure that utilizes nanowire templates for selective epitaxy of radial heterostructures. The starting point is a zinc blende InAs nanowire with thin segments of wurtzite structure. Th ese segments have dual roles: they act as tunnel barriers for electron transport in the InAs core, and they also locally suppress growth of a GaSb shell, resulting in coaxial InAs-GaSb quantum dots with integrated electrical probes. The parallel quantum dot structure hosts spatially separated electrons and holes that interact due to the type-II broken gap of InAs-GaSb heterojunctions. The Coulomb blockade in the electron and hole transport is studied, and periodic interactions of electrons and holes are observed and can be reproduced by modeling. Distorted Coulomb diamonds indicate voltage-induced ground-state transitions, possibly a result of changes in the spatial distribution of holes in the thin GaSb shell.
We demonstrate high-temperature thermoelectric conversion in InAs/InP nanowire quantum dots by taking advantage of their strong electronic confinement. The electrical conductance G and the thermopower S are obtained from charge transport measurements and accurately reproduced with a theoretical model accounting for the multi-level structure of the quantum dot. Notably, our analysis does not rely on the estimate of co-tunnelling contributions since electronic thermal transport is dominated by multi-level heat transport. By taking into account two spin-degenerate energy levels we are able to evaluate the electronic thermal conductance K and investigate the evolution of the electronic figure of merit ZT as a function of the quantum dot configuration and demonstrate ZT ~ 35 at 30 K, corresponding to an electronic effciency at maximum power close to the Curzon- Ahlborn limit.
We study the effects of magnetic and electric fields on the g-factors of spins confined in a two-electron InAs nanowire double quantum dot. Spin sensitive measurements are performed by monitoring the leakage current in the Pauli blockade regime. Rota tions of single spins are driven using electric-dipole spin resonance. The g-factors are extracted from the spin resonance condition as a function of the magnetic field direction, allowing determination of the full g-tensor. Electric and magnetic field tuning can be used to maximize the g-factor difference and in some cases altogether quench the EDSR response, allowing selective single spin control.
We report results on the control of barrier transparency in InAs/InP nanowire quantum dots via the electrostatic control of the device electron states. Recent works demonstrated that barrier transparency in this class of devices displays a general tr end just depending on the total orbital energy of the trapped electrons. We show that a qualitatively different regime is observed at relatively low filling numbers, where tunneling rates are rather controlled by the axial configuration of the electron orbital. Transmission rates versus filling are further modified by acting on the radial configuration of the orbitals by means of electrostatic gating, and the barrier transparency for the various orbitals is found to evolve as expected from numerical simulations. The possibility to exploit this mechanism to achieve a controlled continuous tuning of the tunneling rate of an individual Coulomb blockade resonance is discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا