ﻻ يوجد ملخص باللغة العربية
We present abundances for Ru and Hf, compare them to abundances of other heavy elements, and discuss the problems found in determining Ru and Hf abundances with laboratory gf-values in the spectra of barium stars. We determined Ru and Hf abundances in a sample of giant and dwarf barium stars, by the spectral synthesis of two RuI (4080.574A and 4757.856A) and two HfII (4080.437A and 4093.155A) transitions. The stellar spectra were observed with FEROS/ESO, and the stellar atmospheric parameters lie in the range 4300 < Teff/K < 6500, -1.2 < [Fe/H] <= 0 and 1.4 <= log g < 4.6. The HfII 4080A and the RuI 4758A observed transitions result in a unreasonably high solar abundance, given certain known uncertainties, when fitted with laboratory gf-values. For these two transitions we determined empirical gf-values by fitting the observed line profiles of the spectra of the Sun and Arcturus. For the sample stars, this procedure resulted in a good agreement of Ru and Hf abundances given by the two available lines. The resulting Ru and Hf abundances were compared to those of Y, Nd, Sm and Eu. In the solar system Ru, Sm and Eu are dominated by the r-process and Hf, Nd and Y by the s-process, and all of these elements are enhanced in barium stars since they lie inside the s-process path. Ru abundances show large scatter when compared to other heavy elements, whereas Hf abundances show less scatter and closely follow the abundances of Sm and Nd, in good agreement with theoretical expectations. We also suggest a possible, unexpected, correlation of Ru and Sm abundances. The observed behaviour in abundances is probably due to variations in the 13C pocket efficiency in AGB stars, and, though masked by high uncertainties, hint at a more complex scenario than proposed by theory.
This paper provides long-period and revised orbits for barium and S stars adding to previously published ones. The sample of barium stars with strong anomalies comprise all such stars present in the Lu et al. catalogue. We find orbital motion for all
An extensive study on the potassium abundances of late-type stars was carried out by applying the non-LTE spectrum-fitting analysis to the K I resonance line at 7698.96A to a large sample of 160 FGK dwarfs and 328 late-G /early-K giants (including 89
We present atmospheric models of red giant stars of various metallicities, including extremely metal poor (XMP, [Fe/H]<-3.5) models, with many chemical species, including, significantly, the first two ionization stages of Strontium (Sr) and Barium (B
Barium stars are thought to result from binary evolution in systems wide enough to allow the more massive component to reach the asymptotic giant branch and eventually become a CO white dwarf. While Ba stars were initially known only among giant or s
Barium (Ba) dwarfs and CH subgiants are the less-evolved analogues of Ba and CH giants. They are F- to G-type main-sequence stars polluted with heavy elements by a binary companion when the latter was on the Asymptotic Giant Branch (AGB). This compan