ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-localities in nucleon-nucleus potentials

192   0   0.0 ( 0 )
 نشر من قبل Ken Amos
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Two causes of non-locality inherent in nucleon-nucleus scattering are considered. They are the results of two-nucleon antisymmetry of the projectile with each nucleon in the nucleus and the dynamic polarization potential representation of channel coupling. For energies $sim 40 - 300$ MeV, a g-folding model of the optical potential is used to show the influence of the knock-out process that is a result of the two-nucleon antisymmetry. To explore the dynamic polarization potential caused by channel coupling, a multichannel algebraic scattering model has been used for low-energy scattering.

قيم البحث

اقرأ أيضاً

One important ingredient for many applications of nuclear physics to astrophysics, nuclear energy, and stockpile stewardship are cross sections for reactions of neutrons with rare isotopes. Since direct measurements are often not feasible, indirect m ethods, e.g. (d,p) reactions, should be used. Those (d,p) reactions may be viewed as three-body reactions and described with Faddeev techniques. Faddeev equations in momentum space have a long tradition of utilizing separable interactions in order to arrive at sets of coupled integral equations in one variable. Optical potentials representing the effective interactions in the neutron (proton) nucleus subsystem are usually non-Hermitian as well as energy-dependent. Including excitations of the nucleus in the calculation requires a multichannel optical potential. The purpose of this paper is to introduce a separable, energy-dependent multichannel representation of complex, energy-dependent optical potentials that contain excitations of the nucleus and that fulfill reciprocity exactly. Momentum space Lippmann-Schwinger integral equations are solved with standard techniques to obtain the form factors for the separable representation. Starting from energy-dependent multichannel optical potentials for neutron and proton scattering from $^{12}$C, separable representations based on a generalization of the Ernst-Shakin-Thaler (EST) scheme are constructed which fulfill reciprocity exactly. Applications to n$+^{12}$C and p$+^{12}$C scattering are investigated for energies from 0 to 50~MeV.
We investigate the role of high momentum components of optical model potentials for nucleon-nucleus scattering and its incidence on their nonlocal structure in coordinate space. The study covers closed-shell nuclei with mass number in the range $4leq Aleq 208$, for nucleon energies from tens of MeV up to 1 GeV. To this purpose microscopic optical potentials are calculated using density-dependent off-shell $g$ matrices in Brueckner-Hartree-Fock approximation and based on Argonne $v_{18}$ as well as chiral 2$N$ force up to next-to-next-to-next-to-leading order. We confirm that the gradual suppression of high-momentum contributions of the optical potential results in quite different coordinate-space counterparts, all of them accounting for the same scattering observables. We infer a minimum cutoff momentum $Q$, function of the target mass number and energy of the process, that filters out irrelevant ultraviolet components of the potential. We find that when ultraviolet suppression is applied to Perey-Buck nonlocal potential or local Woods-Saxon potentials, they also result nonlocal with similar appearance to those obtained from microscopic models in momentum space. We examine the transversal nonlocality, quantity that makes comparable the intrinsic nonlocality of any potential regardless of its representation. We conclude that meaningful comparisons of nonlocal features of alternative potentials require the suppression of their ultraviolet components.
Background: Calculating microscopic effective interactions (optical potentials) for elastic nucleon-nucleus scattering has already in the past led to a large body of work. For first-order calculations a nucleon-nucleon (textit{NN}) interaction and a one-body density of the nucleus were taken as input to rigorous calculations of microscopic full-folding calculations. Purpose: Based on the spectator expansion of the multiple scattering series we employ a chiral next-to-next-to-leading order (NNLO) nucleon-nucleon interaction on the same footing in the structure as well as in the reaction calculation to obtain an in leading-order consistent effective potential for nucleon-nucleus elastic scattering, which includes the spin of the struck target nucleon. Methods: The first order effective folding potential is computed by first deriving a nonlocal scalar density as well as a spin-projected momentum distribution. Those are then integrated with the off-shell Wolfenstein amplitudes $A$, $C$, and $M$. The resulting nonlocal potential serves as input to a momentum-space Lippmann-Schwinger equation, whose solutions are summed to obtain the nucleon-nucleus scattering observables. Results: We calculate elastic scattering observables for $^4$He, $^6$He, $^8$He, $^{12}$C, and $^{16}$O in the energy regime between 100 and 200 MeV projectile kinetic energy, and compare to available data. We also explore the extension down to about 70 MeV, and study the effect of ignoring the spin of the struck nucleon in the nucleus. Conclusions: In our calculations we contrast elastic scattering off closed-shell and open-shell nuclei. We find that for closed-shell nuclei the approximation of ignoring the spin of the struck target nucleon is excellent. We only see effects of the spin of the struck target nucleon when considering $^6$He and $^8$He, which are nuclei with a $N/Z$ ratio larger than 1.
Optical model potentials for elastic nucleon nucleus scattering are calculated for a number of target nuclides from a full-folding integral of two different realistic target density matrices together with full off-shell nucleon-nucleon t-matrices der ived from two different Bonn meson exchange models. Elastic proton and neutron scattering observables calculated from these full-folding optical potentials are compared to those obtained from `optimum factorized approximations in the energy regime between 65 and 400 MeV projectile energy. The optimum factorized form is found to provide a good approximation to elastic scattering observables obtained from the full-folding optical potentials, although the potentials differ somewhat in the structure of their nonlocality.
101 - Omar Benhar 2019
The scale-dependence of the nucleon-nucleon interaction, which in recent years has been extensively analysed within the context of chiral effective field theory, is, in fact, inherent in any potential models constrained by a fit to scattering data. A comparison between a purely phenomenological potential and local interactions derived from chiral effective field theory suggests that--thanks to the ability to describe nucleon-nucleon scattering at higher energies, as well as the deuteron momentum distribution extracted from electro-disintegration data--phenomenological potentials are best suited for the description of nuclear dynamics at the scale relevant to neutron star matter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا