ترغب بنشر مسار تعليمي؟ اضغط هنا

Multivariate medians and measure-symmetrization

93   0   0.0 ( 0 )
 نشر من قبل Richard A. Vitale
 تاريخ النشر 2007
  مجال البحث الاحصاء الرياضي
والبحث باللغة English
 تأليف Richard A. Vitale




اسأل ChatGPT حول البحث

We discuss two research areas dealing respectively with (1) a class of multivariate medians and (2) a symmetrization algorithm for probability measures.



قيم البحث

اقرأ أيضاً

Bayesian methods are developed for the multivariate nonparametric regression problem where the domain is taken to be a compact Riemannian manifold. In terms of the latter, the underlying geometry of the manifold induces certain symmetries on the mult ivariate nonparametric regression function. The Bayesian approach then allows one to incorporate hierarchical Bayesian methods directly into the spectral structure, thus providing a symmetry-adaptive multivariate Bayesian function estimator. One can also diffuse away some prior information in which the limiting case is a smoothing spline on the manifold. This, together with the result that the smoothing spline solution obtains the minimax rate of convergence in the multivariate nonparametric regression problem, provides good frequentist properties for the Bayes estimators. An application to astronomy is included.
63 - Thomas Royen 2016
A (p-1)-variate integral representation is given for the cumulative distribution function of the general p-variate non-central gamma distribution with a non-centrality matrix of any admissible rank. The real part of products of well known analytical functions is integrated over arguments from (-pi,pi). To facilitate the computation, these formulas are given more detailed for p=2 and p=3. These (p-1)-variate integrals are also derived for the diagonal of a non-central complex Wishart Matrix. Furthermore, some alternative formulas are given for the cases with an associated one-factorial (pxp)-correlation matrix R, i.e. R differs from a suitable diagonal matrix only by a matrix of rank 1, which holds in particular for all (3x3)-R with no vanishing correlation.
We study the problem of estimating a multivariate convex function defined on a convex body in a regression setting with random design. We are interested in optimal rates of convergence under a squared global continuous $l_2$ loss in the multivariate setting $(dgeq 2)$. One crucial fact is that the minimax risks depend heavily on the shape of the support of the regression function. It is shown that the global minimax risk is on the order of $n^{-2/(d+1)}$ when the support is sufficiently smooth, but that the rate $n^{-4/(d+4)}$ is when the support is a polytope. Such differences in rates are due to difficulties in estimating the regression function near the boundary of smooth regions. We then study the natural bounded least squares estimators (BLSE): we show that the BLSE nearly attains the optimal rates of convergence in low dimensions, while suffering rate-inefficiency in high dimensions. We show that the BLSE adapts nearly parametrically to polyhedral functions when the support is polyhedral in low dimensions by a local entropy method. We also show that the boundedness constraint cannot be dropped when risk is assessed via continuous $l_2$ loss. Given rate sub-optimality of the BLSE in higher dimensions, we further study rate-efficient adaptive estimation procedures. Two general model selection methods are developed to provide sieved adaptive estimators (SAE) that achieve nearly optimal rates of convergence for particular regular classes of convex functions, while maintaining nearly parametric rate-adaptivity to polyhedral functions in arbitrary dimensions. Interestingly, the uniform boundedness constraint is unnecessary when risks are measured in discrete $l_2$ norms.
Cokriging is the common method of spatial interpolation (best linear unbiased prediction) in multivariate geostatistics. While best linear prediction has been well understood in univariate spatial statistics, the literature for the multivariate case has been elusive so far. The new challenges provided by modern spatial datasets, being typically multivariate, call for a deeper study of cokriging. In particular, we deal with the problem of misspecified cokriging prediction within the framework of fixed domain asymptotics. Specifically, we provide conditions for equivalence of measures associated with multivariate Gaussian random fields, with index set in a compact set of a d-dimensional Euclidean space. Such conditions have been elusive for over about 50 years of spatial statistics. We then focus on the multivariate Matern and Generalized Wendland classes of matrix valued covariance functions, that have been very popular for having parameters that are crucial to spatial interpolation, and that control the mean square differentiability of the associated Gaussian process. We provide sufficient conditions, for equivalence of Gaussian measures, relying on the covariance parameters of these two classes. This enables to identify the parameters that are crucial to asymptotically equivalent interpolation in multivariate geostatistics. Our findings are then illustrated through simulation studies.
Markov chain Monte Carlo (MCMC) algorithms are used to estimate features of interest of a distribution. The Monte Carlo error in estimation has an asymptotic normal distribution whose multivariate nature has so far been ignored in the MCMC community. We present a class of multivariate spectral variance estimators for the asymptotic covariance matrix in the Markov chain central limit theorem and provide conditions for strong consistency. We examine the finite sample properties of the multivariate spectral variance estimators and its eigenvalues in the context of a vector autoregressive process of order 1.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا