ترغب بنشر مسار تعليمي؟ اضغط هنا

Distant Radio Galaxies and their Environments

108   0   0.0 ( 0 )
 نشر من قبل Carlos De Breuck
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف George Miley




اسأل ChatGPT حول البحث

We review the properties and nature of luminous high-redshift radio galaxies (HzRGs, z > 2) and the environments in which they are located. HzRGs have several distinct constituents which interact with each other - relativistic plasma, gas in various forms, dust, stars and an active galactic nucleus (AGN). These building blocks provide unique diagnostics about conditions in the early Universe. We discuss the properties of each constituent. Evidence is presented that HzRGs are massive forming galaxies and the progenitors of brightest cluster galaxies in the local Universe. HzRGs are located in overdense regions in the early Universe and are frequently surrounded by protoclusters. We review the properties and nature of these radio-selected protoclusters. Finally we consider the potential for future progress in the field during the next few decades. A compendium of known HzRGs is given in an appendix.

قيم البحث

اقرأ أيضاً

121 - Michiel Reuland 2004
We present the results of an observing program with the SCUBA bolometer array to measure the submillimetre (submm) dust continuum emission of 24 distant (z > 1) radio galaxies. We detected submm emission in 12 galaxies with S/N > 3, including 9 detec tions at z > 3. When added to previous published results these data almost triple the number of radio galaxies with z > 3 detected in the submm and yield a sample of 69 observed radio galaxies over the redshift range z = 1-5. We find that the range in rest-frame far-infrared luminosities is about a factor of 10. We have investigated the origin of this dispersion, correlating the luminosities with radio source power, size, spectral index, K-band magnitude and Lya luminosity. No strong correlations are apparent in the combined data set. We confirm and strengthen the result from previous submm observations of radio galaxies that the detection rate is a strong function of redshift. We compare the redshift dependence of the submm properties of radio galaxies with those of quasars and find that for both classes of objects the observed submm flux density increases with redshift to z ~ 4, beyond which, for the galaxies, we find tentative evidence for a decline. We find evidence for an anti-correlation between submm luminosity and UV polarisation fraction, for a subsample of 13 radio galaxies, indicating that starbursts are the dominant source of heating for dust in radio galaxies.
140 - K. Chyzy 2003
The redshifts of faint radio galaxies identified with giant radio source candidates selected from the sample of Machalski et al. (2001) have been measured. Given the redshift, the projected linear size and radio luminosity are then determined. The ab ove, supplemented with the axial ratio of the sources (evaluated from the radio maps) allows to constrain their jet power and the dynamical age using the analytical model of Kaiser et al. (1997) but modified by allowing the axial ratio of the sources cocoon to evolve in time.
We present the results of the first X-ray study of a sample of 16 young radio sources classified as Compact Symmetric Objects (CSOs). We observed six of them for the first time in X-rays using {it Chandra}, re-observed four with the previous {it XMM- Newton} or {it Beppo-SAX} data, and included six other with the archival data. All the sources are nearby, $z<1$ with the age of their radio structures ($<3000$~years) derived from the hotspots advance velocity. Our results show heterogeneous nature of the CSOs indicating a complex environment associated with young radio sources. The sample covers a range in X-ray luminosity, $L_{2-10,rm keV} sim 10^{41}$-$10^{45}$,erg,s$^{-1}$, and intrinsic absorbing column density of $N_H simeq 10^{21}$--10$^{22}$,cm$^{-2}$. In particular, we detected extended X-ray emission in 1718$-$649; a hard photon index of $Gamma simeq 1$ in 2021$+$614 and 1511$+$0518 consistent with either a Compton thick absorber or non-thermal emission from compact radio lobes, and in 0710$+$439 an ionized iron emission line at $E_{rest}=(6.62pm0.04)$,keV and EW $sim 0.15-$1.4,keV, and a decrease by an order of magnitude in the 2-10 keV flux since the 2008 {it XMM-Newton} observation in 1607$+$26. We conclude that our pilot study of CSOs provides a variety of exceptional diagnostics and highlights the importance of deep X-ray observations of large samples of young sources. This is necessary in order to constrain theoretical models for the earliest stage of radio source evolution and study the interactions of young radio sources with the interstellar environment of their host galaxies.
We present the results from a study with NSFs Karl G. Jansky Very Large Array (VLA) to determine the radio morphologies of extended radio sources and the properties of their host galaxies in 50 massive galaxy clusters at z~1. We find a majority of th e radio morphologies to be Fanaroff-Riley (FR) type IIs. By analyzing the infrared counterparts of the radio sources, we find that ~40% of the host galaxies are the candidate brightest cluster galaxy (BCG) and ~83% are consistent with being one of the top six most massive galaxies in the cluster. We investigate the role of environmental factors on the radio-loud AGN population by examining correlations between environmental and radio-galaxy properties. We find that the highest stellar mass hosts ($M_{*} gtrsim$ 4$times 10^{11} M_{odot}$) are confined to the cluster center and host compact jets. There is evidence for an increase in the size of the jets with cluster-centric radius, which may be attributed to the decreased ICM pressure confinement with increasing radius. Besides this correlation, there are no other significant correlations between the properties of the radio-AGN (luminosity, morphology, or size) and environmental properties (cluster richness and location within the cluster). The fact that there are more AGN in the cluster environment than the field at this epoch, combined with the lack of strong correlation between galaxy and environmental properties, argues that the cluster environment fosters radio activity but does not solely drive the evolution of these sources at this redshift.
83 - M. Branchesi 2005
A complete sample of 18 X-ray selected clusters of galaxies belonging to the ROSAT North Ecliptic Pole (NEP) survey has been observed with the Very Large Array at 1.4 GHz. These are the most distant clusters in the X-ray survey with redshift in the r ange 0.3 < z < 0.8.Seventy-nine radio sources are detected within half an Abell radius with an observed peak brightness >=0.17 mJy/beam, except for three sources, belonging to the same cluster, which have a higher peak brightness limit of 0.26 mJy/beam. The NEP field source counts are in good agreement with the source counts of a comparison survey, the VLA-VIRMOS deep field survey, indicating that the NEP sample is statistically complete. Thirty-two out of the 79 sources are within 0.2 Abell radii, twenty-two of them are considered cluster members based on spectroscopic redshifts or their optical magnitude and morphological classification. The cluster radio galaxies are used to construct the Radio Luminosity Function (RLF) of distant X-ray selected clusters. A comparison with two nearby cluster RLFs shows that the NEP RLF lies above the local ones, has a steeper slope at low radio powers (<= 10^(24) W/Hz) and shows no evidence for a break at about 6 X 10^(24) W/Hz which is observed in the nearby cluster RLFs. We discuss briefly the origin and possible explanations of the differences observed in the radio properties of nearby and distant clusters of galaxies. The main result of this study is that the RLF of the distant X-ray clusters is very different from that of the local rich Abell clusters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا