ترغب بنشر مسار تعليمي؟ اضغط هنا

Coherent spin rotations in open driven double quantum dots

62   0   0.0 ( 0 )
 نشر من قبل Rafael S\\'anchez
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the charge and spin dynamics in a DC biased double quantum dot driven by crossed DC and AC magnetic fields. In this configuration, spatial delocalization due to inter-dot tunnel competes with intra-dot spin rotations induced by the time dependent magnetic field, giving rise to a complicated time dependent behavior of the tunnelling current. When the Zeeman splitting has the same value in both dots and spin flip is negligible, the electrons remain in the triplet subspace (dark subspace) performing coherent spin rotations and the current does not flow. This electronic trapping is removed either by finite spin relaxation or when the Zeeman splitting is different in each quantum dot. In the first case, our results show that measuring the current will allow to get information on the spin relaxation time. In the last case, we will show that applying a resonant bichromatic magnetic field, the electrons become trapped in a coherent superposition of states and electronic transport is blocked. Then, manipulating AC magnetic fields, electrons are driven to perform coherent spin rotations which can be unambiguously detected by direct measurement of the tunneling current.



قيم البحث

اقرأ أيضاً

We quantify the contributions of hyperfine and spin-orbit mediated singlet-triplet mixing in weakly coupled InAs quantum dots by electron transport spectroscopy in the Pauli spin blockade regime. In contrast to double dots in GaAs, the spin-orbit cou pling is found to be more than two orders of magnitudes larger than the hyperfine mixing energy. It is already effective at magnetic fields of a few mT, where deviations from hyperfine mixing are observed.
We investigate phonon-induced spin and charge relaxation mediated by spin-orbit and hyperfine interactions for a single electron confined within a double quantum dot. A simple toy model incorporating both direct decay to the ground state of the doubl e dot and indirect decay via an intermediate excited state yields an electron spin relaxation rate that varies non-monotonically with the detuning between the dots. We confirm this model with experiments performed on a GaAs double dot, demonstrating that the relaxation rate exhibits the expected detuning dependence and can be electrically tuned over several orders of magnitude. Our analysis suggests that spin-orbit mediated relaxation via phonons serves as the dominant mechanism through which the double-dot electron spin-flip rate varies with detuning.
We report Pauli spin blockade in an impurity defined carbon nanotube double quantum dot. We observe a pronounced current suppression for negative source-drain bias voltages which is investigated for both symmetric and asymmetric coupling of the quant um dots to the leads. The measured differential conductance agrees well with a theoretical model of a double quantum dot system in the spin-blockade regime which allows us to estimate the occupation probabilities of the relevant singlet and triplet states. This work shows that effective spin-to-charge conversion in nanotube quantum dots is feasible and opens the possibility of single-spin readout in a material that is not limited by hyperfine interaction with nuclear spins.
95 - M. Kondo , S. Miyota , W. Izumida 2021
We investigate the influence of thermal energy on the current flow and electron spin states in double quantum dots in series. The quadruplet Pauli spin blockade, which is caused by the quadruplet and doublet states, occurs at low temperatures affecti ng the transport properties. As the temperature increases, the quadruplet Pauli spin blockade occurs as a result of the thermal energy, even in regions where it does not occur at low temperatures. This is because the triplet state is formed in one dot as a result of the gradual change of the Fermi distribution function of the electrodes with increasing temperature. Moreover, the thermally assisted Pauli spin blockade results in coexistence of the Coulomb and Pauli spin blockades. Conversely, for the standard triplet Pauli spin blockade, which occurs as a result of the triplet and singlet states, the current through the double dots monotonously smears out as the temperature increases. Therefore, the thermally assisted Pauli spin blockade is not clearly observed. However, the coexistence of the Coulomb and triplet Pauli spin blockades as a result of the thermal energy is clearly obtained in the calculation of the probability of the spin state in the double dots.
We study thermoelectric transport through double quantum dots system with spin-dependent interdot coupling and ferromagnetic electrodes by means of the non-equilibrium Green function in the linear response regime. It is found that the thermoelectric coefficients are strongly dependent on the splitting of interdot coupling, the relative magnetic configurations and the spin polarization of leads. In particular, the thermoelectric efficiency can achieve considerable value in parallel configuration when the effective interdot coupling and tunnel coupling between QDs and the leads for spin-down electrons are small. Moreover, the thermoelectric efficiency increases with the intradot Coulomb interactions increasing and can reach very high value at an appropriate temperature. In the presence of the magnetic field, the spin accumulation in leads strongly suppresses the thermoelectric efficiency and a pure spin thermopower can be obtained.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا