ﻻ يوجد ملخص باللغة العربية
We investigate phonon-induced spin and charge relaxation mediated by spin-orbit and hyperfine interactions for a single electron confined within a double quantum dot. A simple toy model incorporating both direct decay to the ground state of the double dot and indirect decay via an intermediate excited state yields an electron spin relaxation rate that varies non-monotonically with the detuning between the dots. We confirm this model with experiments performed on a GaAs double dot, demonstrating that the relaxation rate exhibits the expected detuning dependence and can be electrically tuned over several orders of magnitude. Our analysis suggests that spin-orbit mediated relaxation via phonons serves as the dominant mechanism through which the double-dot electron spin-flip rate varies with detuning.
While quantum dots are at the forefront of quantum device technology, tuning multi-dot systems requires a lengthy experimental process as multiple parameters need to be accurately controlled. This process becomes increasingly time-consuming and diffi
We theoretically investigate transport signatures of quantum interference in highly symmetric double quantum dots in a parallel geometry and demonstrate that extremely weak symmetry-breaking effects can have a dramatic influence on the current. Our c
We investigate spin relaxation in a silicon double quantum dot via leakage current through Pauli blockade as a function of interdot detuning and magnetic field. A dip in leakage current as a function of magnetic field on a sim 40 mT field scale is at
We report a detailed study of low-temperature (mK) transport properties of a silicon double-dot system fabricated by phosphorous ion implantation. The device under study consists of two phosphorous nanoscale islands doped to above the metal-insulator
A key challenge in scaling quantum computers is the calibration and control of multiple qubits. In solid-state quantum dots, the gate voltages required to stabilize quantized charges are unique for each individual qubit, resulting in a high-dimension