ﻻ يوجد ملخص باللغة العربية
Population of a phononic mode coupled to a single-electron transistor in the sequential tunneling regime is discussed for the experimentally realistic case of intermediate electron-phonon coupling. Features like a sub-Poissonian bosonic distribution are found in regimes where electron transport drives the oscillator strongly out of equilibrium with only few phonon states selectively populated. The electron Fano factor is compared to fluctuations in the phonon distribution, showing that all possible combinations of sub- and super-Poissonian character can be realized.
We investigate qubit lasing in the strong coupling limit. The qubit is given by a Cooper-pair box, and population inversion is established by an additional third state, which can be addressed via quasiparticle tunneling. The coupling strength between
We report on high frequency resolution coherent nonlinear optical spectroscopy on an ensemble of InGaN disks in GaN nanowires at 300 K. Sub-$mu$eV resonances in the inhomogeneously broadened third order ($chi^{(3)}$) absorption spectrum show asymmetr
We measured the shot noise in the CoFeB/MgO/CoFeB-based magnetic tunneling junctions with a high tunneling magnetoresistance ratio (over 200% at 3 K). Although the Fano factor in the anti-parallel configuration is close to unity, it is observed to be
Edge states of two-dimensional topological insulators are helical and single-particle backscattering is prohibited by time-reversal symmetry. In this work, we show that an isotropic exchange coupling of helical edge states (HES) to a spin 1/2 impurit
Nanogap engineering of low-dimensional nanomaterials, has received considerable interest in a variety of fields, ranging from molecular electronics to memories. Creating nanogaps at a certain position is of vital importance for the repeatable fabrica