ترغب بنشر مسار تعليمي؟ اضغط هنا

Quasars with a Kick -- Black Hole Recoil in Quasars

141   0   0.0 ( 0 )
 نشر من قبل Gregory Shields
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Mergers of spinning black holes can give recoil velocities from gravitational radiation up to several thousand km/s. A recoiling supermassive black hole in an AGN can retain the inner part of its accretion disk, providing fuel for continuing AGN activity. Using AGN in the Sloan Digital Sky Survey (SDSS) that show velocity shifts of the broad emission lines relative to the narrow lines, we place upper limits on the incidence of high velocity recoils in AGN. Brief but powerful flares in soft X-rays may occur when bound material falls back into the moving accretion disk.

قيم البحث

اقرأ أيضاً

We report on a study that finds a positive correlation between black hole mass and variability amplitude in quasars. Roughly 100 quasars at z<0.75 were selected by matching objects from the QUEST1 Variability Survey with broad-lined objects from the Sloan Digital Sky Survey. Black hole masses were estimated with the virial method using the broad Hbeta line, and variability was characterized from the QUEST1 light curves. The correlation between black hole mass and variability amplitude is significant at the 99% level or better and does not appear to be caused by obvious selection effects inherent to flux-limited samples. It is most evident for rest frame time lags of the order a few months up to the QUEST1 maximum temporal resolution of about 2 years. The correlation between black hole mass and variability amplitude means that the more massive black holes have larger percentage flux variations. Over 2-3 orders of magnitude in black hole mass, the amplitude increases by approximately 0.2 mag. A likely explanation for the correlation is that the more massive black holes are starving and produce larger flux variations because they do not have a steady inflow of gaseous fuel. Assuming that the variability arises from changes in the accretion rate Li & Cao [8] show that flux variations similar to those observed are expected as a consequence of the more massive black holes having cooler accretion disks.
We determined the spin value of supermassive black hole (SMBH) in active galactic nuclei (AGN) with investigated ultraviolet-to-optical spectral energy distribution, presented in the sample of Shang et al. (2005). The estimates of the spin values hav e been produced at the base of the standard geometrically thin accretion disk model and with using the results of the polarimetric observations. The polarimetric observations are very important for determining the inclination angle of AGN disk. We presented the results of our determinations of the radiation efficiency of the accretion flow and values of the spins of SMBHs, that derives the coefficient of radiation efficiency. The majority of SMBHs of AGNs from Shang et al. (2005) sample are to be the Kerr black holes with the high spin value.
80 - E. W. Bonning 2007
Recent simulations of merging black holes with spin give recoil velocities from gravitational radiation up to several thousand km/s. A recoiling supermassive black hole can retain the inner part of its accretion disk, providing fuel for a continuing QSO phase lasting millions of years as the hole moves away from the galactic nucleus. One possible observational manifestation of a recoiling accretion disk is in QSO emission lines shifted in velocity from the host galaxy. We have examined QSOs from the Sloan Digital Sky Survey with broad emission lines substantially shifted relative to the narrow lines. We find no convincing evidence for recoiling black holes carrying accretion disks. We place an upper limit on the incidence of recoiling black holes in QSOs of 4% for kicks greater than 500 km/s and 0.35% for kicks greater than 1000 km/s line-of-sight velocity.
We present a new analysis of the PG quasar sample based on Spitzer and Herschel observations. (I) Assuming PAH-based star formation luminosities (L_SF) similar to Symeonidis et al. (2016, S16), we find mean and median intrinsic AGN spectral energy di stributions (SEDs). These, in the FIR, appear hotter and significantly less luminous than the S16 mean intrinsic AGN SED. The differences are mostly due to our normalization of the individual SEDs, that properly accounts for a small number of very FIR-luminous quasars. Our median, PAH-based SED represents ~ 6% increase on the 1-243 micron luminosity of the extended Mor & Netzer (2012, EM12) torus SED, while S16 find a significantly larger difference. It requires large-scale dust with T ~ 20 -- 30 K which, if optically thin and heated by the AGN, would be outside the host galaxy. (II) We also explore the black hole and stellar mass growths, using L_SF estimates from fitting Herschel/PACS observations after subtracting the EM12 torus contribution. We use rough estimates of stellar mass, based on scaling relations, to divide our sample into groups: on, below and above the star formation main sequence (SFMS). Objects on the SFMS show a strong correlation between star formation luminosity and AGN bolometric luminosity, with a logarithmic slope of ~ 0.7. Finally we derive the relative duty cycles of this and another sample of very luminous AGN at z = 2 -- 3.5. Large differences in this quantity indicate different evolutionary pathways for these two populations characterised by significantly different black hole masses.
We explore the connection between black hole growth at the center of obscured quasars selected from the XMM-COSMOS survey and the physical properties of their host galaxies. We study a bolometric regime (<Lbol > 8 x 10^45 erg/s) where several theoret ical models invoke major galaxy mergers as the main fueling channel for black hole accretion. We confirm that obscured quasars mainly reside in massive galaxies (Mstar>10^10 Msun) and that the fraction of galaxies hosting such powerful quasars monotonically increases with the stellar mass. We stress the limitation of the use of rest-frame color-magnitude diagrams as a diagnostic tool for studying galaxy evolution and inferring the influence that AGN activity can have on such a process. We instead use the correlation between star-formation rate and stellar mass found for star-forming galaxies to discuss the physical properties of the hosts. We find that at z ~1, ~62% of Type-2 QSOs hosts are actively forming stars and that their rates are comparable to those measured for normal star-forming galaxies. The fraction of star-forming hosts increases with redshift: ~71% at z ~2, and 100% at z ~3. We also find that the the evolution from z ~1 to z ~3 of the specific star-formation rate of the Type-2 QSO hosts is in excellent agreement with that measured for star-forming galaxies. From the morphological analysis, we conclude that most of the objects are bulge-dominated galaxies, and that only a few of them exhibit signs of recent mergers or disks. Finally, bulge-dominated galaxies tend to host Type-2 QSOs with low Eddington ratios (lambda<0.1), while disk-dominated or merging galaxies have at their centers BHs accreting at high Eddington ratios (lambda > 0.1).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا