ﻻ يوجد ملخص باللغة العربية
We present a new analysis of the PG quasar sample based on Spitzer and Herschel observations. (I) Assuming PAH-based star formation luminosities (L_SF) similar to Symeonidis et al. (2016, S16), we find mean and median intrinsic AGN spectral energy distributions (SEDs). These, in the FIR, appear hotter and significantly less luminous than the S16 mean intrinsic AGN SED. The differences are mostly due to our normalization of the individual SEDs, that properly accounts for a small number of very FIR-luminous quasars. Our median, PAH-based SED represents ~ 6% increase on the 1-243 micron luminosity of the extended Mor & Netzer (2012, EM12) torus SED, while S16 find a significantly larger difference. It requires large-scale dust with T ~ 20 -- 30 K which, if optically thin and heated by the AGN, would be outside the host galaxy. (II) We also explore the black hole and stellar mass growths, using L_SF estimates from fitting Herschel/PACS observations after subtracting the EM12 torus contribution. We use rough estimates of stellar mass, based on scaling relations, to divide our sample into groups: on, below and above the star formation main sequence (SFMS). Objects on the SFMS show a strong correlation between star formation luminosity and AGN bolometric luminosity, with a logarithmic slope of ~ 0.7. Finally we derive the relative duty cycles of this and another sample of very luminous AGN at z = 2 -- 3.5. Large differences in this quantity indicate different evolutionary pathways for these two populations characterised by significantly different black hole masses.
We present VLT/SINFONI observations of 35 quasars at 2.1 < z < 3.2, the majority of which were selected from the Clusters Around Radio-Loud AGN (CARLA) survey. CARLA quasars have large CIV-based black hole (BH) masses (M(BH) > 10^9 Msun) and powerful
Quasars at $z ,=, 6$ are powered by accretion onto supermassive black holes with masses $M_{rm BH} sim 10^9 rm , M_{odot}$. Their rapid assembly requires efficient gas inflow into the galactic nucleus, sustaining black hole accretion at a rate close
The properties of the molecular gas can shed light on the physical conditions of quasar host galaxies and the effect of feedback from accreting supermassive black holes. We present a new CO(2-1) survey of 23 z<0.1 Palomar-Green quasars conducted with
Super-massive black holes weighing up to $sim 10^9 , mathrm{M_{odot}}$ are in place by $z sim 7$, when the age of the Universe is $lesssim 1 , mathrm{Gyr}$. This implies a time crunch for their growth, since such high masses cannot be easily reached
The validity of the unified active galactic nuclei (AGN) model has been challenged in the last decade, especially when different types of AGNs are considered to only differ in the viewing angle to the torus. We aim to assess the importance of the vie